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1. Introduction

Complex fluids involve multi-physics and multi-scale phenomena that require advanced techniques in scientific comput-
ing in order to be solved efficiently. The goal of this paper is to present numerical techniques that have been well tested and
shown to give accurate solutions with a reasonable amount of computational cost, while also preserving the global energy of
the system. While the systems can be described with partial differential equations (PDEs), in this case a time-dependent and
nonlinear system of equations, an underlying energy law also describes the physics. It is from these laws that the PDE is
derived. Therefore, approximate solutions to complex fluid problems should adequately approximate this energy law.

Here, we look at one type of complex fluid problem, two-phase flow. The conventional sharp interface description of the
mixture of two Newtonian fluids with density, p;, and viscosity, w;, assumes the mixture occupies the overall domain,
Q=071UQ,, as in Fig. 1. The interface between two materials is the free moving interface, I',.

The overall system includes the Navier-Stokes equation in each ©;, where i=1 or 2:

ou;
pi (W +(ui- V)w) +Vp; = 1V,

V-u=0.

Here, u;, p;, p;, and y; are the velocities, pressures, densities, and viscosities of each fluid, respectively. On 3Q we have a
Dirichlet boundary condition u; = 0. On I'; we have two possible types of boundary conditions. Kinematic boundary condi-
tions yield u; - n =V, where n is the “directional” normal of I'; and V,, is the normal speed of I';. Traction free boundary
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Fig. 1. Fluid 1 is in region €, and fluid 2 is region ©Q,. I'; represents the mixing interface.

conditions (also known as force balance conditions) satisfy [;] - n = surface force on I';, where [1;] is the jump of the stress
tensor,

Vu; + (Vuy)"

T =2uDi+pl, Di= %

Remark. The homogeneous Dirichlet boundary condition for u; on 9 implies that I',n 9Q = for t > 0. In other words, if
the boundary of the “bubble” region at t =0, I'y, is at a positive distance from 02, then it will never touch 9 for t > 0.

In case the surface force is attributed to the surface tension, i.e., Fsyface = kHN, where H is the mean curvature of I';and k is
the surface tension parameter, then the whole system possesses the underlying energy law,

o (Z/ 5 piludx + karea( rt>: (Z / IV dx)

In this paper, we take a different approach, called the diffusive interface method (phase-field method). The label function,
¢(x,t), is introduced such that

+1 in fluid 1,

o, 0) = { 1 in fluid 2.

The interaction between the two materials is reflected through the “mixing” energy, or the Ginzburg-Landau type of energy:

[Wigax= [ SVl + 4 - 1)7d

where [, 1 |V¢[*dx represents the tendency of the mixture to be homogeneous. In other words, it is the “phillic” interaction.
In addition, [, 71> (¢? — 1)*dx represents the “phobic” interaction, or the tendency of the mixture to be separated. The param-
eter € reflects the competition between the two opposite tendencies.

Due to the nature of this empirical energy, it is present in many theories in physics, such as superconductivity [1,2] and
phase transitions [3,4]. It can be shown that ¢ — +1 almost everywhere as € — 0, thus representing the separation of the two
immiscible materials. Moreover, the thermodynamics and patterns of the interface, I';, can be captured by the level sets of ¢,
for instance, {X|¢(x,t) = 0}. In addition, the energy € [, W(¢) — coArea(I';), which is equivalent to the surface tension case in
the sharp interface formulation [5]. It is worth pointing out that, while one can view the diffusive interface formula as being
the regularizing approximation of the sharp interface formulation, it is more physical to view the sharp interface formulation
as being the ideal approximation of the diffusive interface method. Therefore, it can be understood that the phase field
description really captures the microscopic interaction of the mixtures.

In the examples presented here, we consider problems where we have one or more bubbles of one phase interacting in a
region of a fluid of the other phase. From this system, the continuous energy laws are derived as is the continuous system of
PDEs. We then show that these laws are adequately preserved numerically.

To solve the system, we use the first-order system least-squares (FOSLS) finite element approach. This method has been
well-tested on many different types of PDEs and, specifically, on several complex fluid systems [6-10], including those of
magnetohydrodynamics (MHD) [11,12]. We show that use of the FOSLS method allows both an accurate solution of the
system and preservation of the energy laws. Moreover, because we are using this method, we have the advantage of being
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able to use other numerical techniques, such as nested iteration and adaptive local refinement, which greatly improve the
efficiency of solving these problems.

This paper is structured as follows. In Section 2, we describe the two-phase model and present the equations to be solved.
In Section 3, we discuss the FOSLS formulation that is used and show how it presents a well-posed discrete problem. Section
4 introduces the energy laws and discusses what quantities are preserved with the numerical schemes being used. Numer-
ical results for certain bubble test problems and an MHD simulation are presented in Section 5, where it is shown that this
approach is accomplishing the intended goal. Finally, a discussion of the results and summary is given in Section 6.

2. The two-phase equations

The dynamics of mixing between two fluids plays an important role in many physical applications. Here, we use a model
that couples the Navier-Stokes equations with a phase-field transport equation. We use the Allen-Cahn-type equations,
which were originally introduced in [3,13] to describe the motion of anti-phase boundaries in crystalline solids. The
Navier-Stokes-Allen-Cahn equations have since been used in many interface problems in fluid dynamics through a
phase-field approach [4,5,14,15,21]. They are

ou

S V)u+Vp+ V- (Vo ® V) — uViu =0, (1)
V-u=0, (2)
Geruo-3(Vi- ol -1) o 3)

Here, u is the fluid velocity, p is the fluid pressure, and ¢ is the phase-field function. The physical parameters are the mixing
energy parameter, 4, the viscosity of the two fluids, g, the elastic relaxation time of the system, 7, and the mixing layer width,
€. We assume that both fluids have the same viscosity and mass density (which is assumed to be 1). It should be noted that as
€ — 0, the parameter /. is associated with the surface tension at the boundary. The above system will be equipped with prop-
er initial data and boundary conditions. In this paper, we choose Dirichlet boundary conditions for both u and ¢. Therefore, if
one phase is not initially touching the domain boundary, the phase interface will never come into contact with the overall
boundary. In fact, other boundary conditions can be used to handle the situation when the two phases do touch the bound-
ary. However, more physics (such as moving contact lines) needs to be introduced. This will be addressed in future work.

With the “mixing” energy, W(¢), described above, and following the general approach of Onsager [16-19], we can pre-
scribe the whole system as a dissipative system (see [4,5] and the references therein):

Ot</2 Q)P + W (p)d ) - [ moivup 42 |¢\ dx,

where [, |p|>dx represents the microscopic internal damping, with the kinematic assumption of ¢ = 9"’ +u- V¢. We can then
employ the least action principle (LAP) for the Hamiltonian part of the system and the maximum dlSSlpatlon principle (MDP)
for the dissipative part of the system [16-20]. In the case that u; = > = ¢t and p; = 1, we obtain Egs. (1)-(3). In case y =0, i.e.,
we neglect the internal damping, we can show that Egs. (1)-(3) approaches the sharp interface formulation [5,15]. In
particular,

V. (Ve Ve) = (vz«pw +V<'W) ))

where 4(V2$V¢) reflects the surface tension force, kHn, modulating the pressure contributions.

Remark. Later, we indicate the structural similarities between the diffusive interface formulation and that of resistive MHD
systems. In this setting, the terms /(V¢ ® V) — ‘V”‘Z I are equivalent to the Maxwell stress, and A1V2$V ¢ is equivalent to the
Lorentz force.

Next, we discuss the numerical methods that are used to solve this problem.

3. FOSLS formulation

To solve the nonlinear system of equations, which for discussion is denoted by £(u) = f, a first-order system least-squares
(FOSLS) finite-element discretization is used [6,7,22]. First, consider a linear first-order system, denoted by Lu = f. Then, the
linear problem is recast as the minimization of a functional constructed by taking the L?> norm of the residual of each equa-
tion. This is written as

_ . . L . _ 2
u. = argmin G(u; f) := argmin |[Lu — f1lo, (4)
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where u, is the solution in an appropriate Hilbert space V.
Thus, u, satisfies [G'(u,)]v = 0, which is the Fréchet derivative of G at u, applied to v € V. This results in the weak form of

the problem:
find u. € V such that
(Lu,,Lv)y = (f,Lo)Vv e V, (5)
where (.,-) is the usual L? inner product. Desirable properties of the bilinear form, (Lu,Lv), are
continuity (Lu,Lv) < ca|ull,l|7|, Yu,v eV, (6)
coercivity (Lu,Lu) > ¢;||ul5 Vue V. (7)

These properties imply the existence of a unique solution, u, € V, for the weak problem (5).

Next, we approximate u, by restricting (4) to a finite-dimensional subspace, V" C 'V, which leads to (5) restricted to V".
Since V' is a subspace of V, the discrete problem is also well-posed. Choosing an appropriate basis via the finite-element
method, V" = span{®;}, yields an algebraic system of equations involving the matrix A with elements

(A)y = (LP;, LDi).

In general, if V is a subspace of H' (product space), and continuity and coercivity hold we say that the FOSLS functional is H'
equivalent. In this case, the linear system is amenable to an iterative solution by multilevel techniques. In particular, AMG
has been shown to work well on a wide range of such problems [6-9,23-29)]. In practice, standard conforming finite-element
bases can be used, such as bilinear or bi-quadratic elements on a tensor product mesh.

In addition, note that the functional yields an a posteriori error measure. If u" € V", then

Guh;f) = |Lu" — 5 = |Lu" — Lu.||§ = ||Le" |3 ~ c||e"||3 (8)

The last relation comes from the continuity and coercivity bounds in (6) and (7). Thus, the functional value is equivalent to
the error measured in the Hilbert space norm. In general, the constant c in Eq. (8) depends on the continuity and coercivity
constants, ¢, and c;. These constants, of course, depend on properties of the PDE as well as on boundary conditions and the
computational domain. For this paper, we study simple domains and boundary conditions for which these constants are not
large. In addition, our numerical results show that the problem parameters do not adversely affect our accuracy either.
Addressing these issues analytically would be a topic of another paper and has been studied in other problems such as in
[8-10]. Locally, on any subset of €, such as an element, the functional yields an estimate of the error. This property of FOSLS
helps make it possible to efficiently solve complex systems. At each step in the solution algorithm, a local measure of the
functional is available. Since this is the norm we are minimizing, this allows judgements to be made based on estimates
of the increase of accuracy that results from an increase in computational cost. As a result, methods such as nested iteration
and adaptive local refinement can be used to improve the efficiency of solving such systems. This has been applied to various
complex fluids problems, including magnetohydrodynamics [11,12,30,31]. A brief description of the algorithms used is de-
scribed in Section 5.

3.1. Linearization (Newton-FOSLS)

Since the two-phase system is nonlinear, we first linearize it before we put it into a FOSLS weak form. The system
becomes

L(uo + 1) ~ L(uo) + £ (uo)]i, 9)
where 1y is the current approximation and [£'(uo)] is the Fréchet derivative evaluated at u,. The functional then becomes

G(i,f) = 1€/ (uo)lit — (f ~ L(t))][o- (10)
Minimization of the linearized functional yields i1, that satisfies the weak form: find i, € V such that,

(£ (o)), [£'(u0)]9) = ((f — L(uo)), [L'(uo)]V) V¥ EV. (11)

Once 1 is found, it is added to the previous iterate to get the next approximation,
Uy =uUp + 1. (12)

Thus, in a nonlinear setting, the FOSLS approach can be applied and, if the linearized functional retains continuity and coer-
civity, (6) and (7), it also retains the desirable properties as described for linear systems. In addition, the nonlinear functional,
that is, the L? norm of the residual of the nonlinear system, can be computed as well as the linear functional or the L? norm of
the linearized system. This allows the two functional values to be compared after each linearization and helps determine if
the Newton iterations are converging as expected.

A similar approach would be to create the FOSLS functional of the nonlinear problem and linearize this functional instead.
This FOSLS-Newton approach generally involves more terms than the Newton-FOSLS method described here. As the approx-
imation approaches the solution, these additional terms are higher-order and tend to zero faster than the overall functional
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and the two methods tend to be the same. Thus, when nested iteration is used, as it is here, there tends to be very little dif-
ference in the convergence behavior of these two approaches. FOSLS-Newton may be more robust in some especially chal-
lenging situations, but the Newton-FOSLS approach is simpler and has been successful in a number of applications [25,32], so
we confine our presentation to it in this paper.

3.2. Velocity-grad formulation

To reformulate (1)-(3) as a first-order system, we introduce new variables that represent the gradient of the velocity vec-
tor, u, and the phase-field function, ¢:

V- vVuo (Un 7/21> _ <3xu1 6x”2>7 (13)
= V1 Uxn oy Oy
Ox¢
B=V¢= < ) 14
o=, (14

This formulation has been shown to work well for the Navier-Stokes equations alone when velocity boundary conditions
are given [8,9]. To make the system H! equivalent, a few auxiliary equations are added to the system. These are consistent
with the original equations and make the first-order system well-posed. The resulting system is as follows:

V-Vu=0, (15)
VxV=0, (16)
V.u=0, (17)
v(trV) =0, (18)
ou

ortVP+/B(V B)—uv V=0, (19)
B-V¢=0, (20)
VxB=0, (21)
99 \ 1, 5 _

E+u-B7/<V-B—? (¢ ,1)>_0, (22)

In practice, Eq. (18) is achieved by eliminating one of the diagonal components of V in terms of the other diagonal com-
ponents. This comes from the divergence-free constraint on the velocity. Thus, in 2D, there are 13 equations and 9 unknowns
and, in 3D, there are 29 equations and 16 unknowns. The L? norm of the linearized version of this system is then minimized
as in Section 3 and a bilinear form as in (5) is obtained. Next we show that this bilinear form is coercive and continuous and,
thus, that the weak system is well-posed.

3.3. Equivalence of the FOSLS functional

As described above, if continuity, (6), and coercivity, (7), of the FOSLS functional, ||Lu||o, holds, we say the functional is H'
equivalent. This can be shown for the linearized system at each time step. We assume that an implicit backward difference
time-stepping scheme is used and consider this semi-discrete system first. This says that, for each Newton step and time
step, the FOSLS discretization gives a well-posed numerical system to solve. We state the main theorem here and give
the proof. However, many of the details are omitted to save space and since they have been shown in previous works.

Theorem 3.1. cf. [6-9,33]Let L be the linearized first order two-phase flow operator as in Eqs. (15)-(22) and let G be the FOSLS
functional as defined in Eq. (10) of this linearized system. Let the domain, €2, be a bounded convex polyhedron with connected
boundary or a simply connected region with a C"'! boundary. Denote U = (u, V.p, #,B)T and let

Uevi=H(QF x H'(Q) x 3@ nH Q)] x Hy(Q)] x H'(2)].

Assume u", V", B", and ¢" are given members of our finite-element space and, therefore, |[u"|, V", |B"|., IV -B"|., and
9" |lo < co. Then there exists positive constants,c; and c5, that yield the following bounds:

a.

G < caIlulff + NVIE + P + 1B + (1911, (23)

cr(Jlulf + 1L + P11 + IBIF + 1617) <G. (24)
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These bounds mean that the functional, G, is equivalent to the H' norm of the error.
The spaces above are defined as follows:

13(@) = (pe (@) : [ pax=0},

H'(Q) = {p e (@) : Vp e (@)},

H'(Q)? = the d-dimensional version of H'(Q),

HY(Q) = {p e [*(Q): Vp € (I*(2))* and p = 0 on dQ}.

Proof of 3.1. Proving continuity, (23), of the linearized first-order system involves several instances of the triangle inequality
and is, therefore, easy to show.

Coercivity, (24), is accomplished by treating the two coupled block systems, Navier-Stokes and the phase field equation,
separately. A linearized system of (15)-(22) can be written in block form as follows:

u

1%

A A =

A — <ANS . NP > »
PN phase ¢

B

Here, Ays represents the linearized Navier-Stokes equations in first-order form and without the coupling term, (15)-(19).
Similarly, Apnese represents the linearized phase function equations without the velocity field coupling, (20)-(22). The cou-
pling terms are as follows:

AnpB =/B"V -B + A(V - B")B,
Apyu = B" u.
The superscript n represents that the solution is from a previous Newton step. Since we are working on discrete finite ele-
ment spaces, we can assume the L*° norms of all the previous iterations are bounded.
In [8,9], coercivity has been shown for the Ays block given here. For the phase field system, the coercivity bound can be

shown in a similar fashion. In fact, ignoring the nonlinear terms, the system resembles the FOSLS formulation used on the
heat equation [6,7]:

¢

o~V B=F,
B-V¢=0,
VxB=0,

¢ =0 on 0Q,

nxB=0onoQ.

Forming the functional of the linearized system for just the phase field block, we write
Gotase = o)+ - B — 7V - BJlg + [V x B[[g + B~ Vbl .

Again, it is assumed that an implicit time-stepping scheme is used so o depends on the time step. With part of the nonlinear
coupling included in this block, g depends on the parameters of the problem and the previous solutions. This in fact makes
the problem resemble an advection-diffusion type system. Since this functional only adds zeroth-order terms (i.e. no deriv-
atives) to this system, a standard compactness argument can be used to show that there exists a constant, C > 0, such that

C(IBIF + 1417) < Gpnase

It should be noted that this requires c|/B|? < ||V - B||2 + ||V x B|)?, for some constant c > 0. However, this is true due to the
assumptions on the boundary and the boundary condition, n x B =0 (see Chapter I, Section 3 in [34]). Thus, the uncoupled
system is H' equivalent: there exists positive constants, ¢, and &y, such that

R Ay 0
et < (5 g )
phase

2
< eyllul}.

0

Next, we consider adding the off-diagonal coupling blocks of the system. In [33], the following lemma was proved:

Lemma 3.2. Let £ be a 2 x 2 upper triangular block matrix such that

(5 4)() - (s)
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Let A; and A; be invertible and let there exist a positive constant, C, such that

ITu 5 < CllAzua] .

1 et DL

Looking at the upper triangular portion of the two-phase flow system, we see that

IAneBllg = [|4B"V - B + A(V - B")B|[ < C1BJ[g + C2||V - B[,

for some positive constants C; and C,. Adding a curl term at the end and using a Poincaré inequality, it is easily shown from
the coercivity of the phase-field block that

HANPBHO C3HAphaseB||07
for some constant, C; > 0. Thus, from Lemma 3.2, we know that

Anp > 2
U|l7 < u
C H ”] H< 0 Aphase

0

Finally, to show equivalence of the full linearized system, it should be noted that the lower left block, Apy, involves a term
with no derivatives and another standard compactness argument can be used. Here, again, we must assume that the previ-
ous iterations of u and B are bounded. Thus, there exists positive constants c¢; and ¢, such that

Ays A 2
( NS NP > ull <
APN Aphase

0

2 2
alluy < CalfeA][3-

Therefore, for each time step and linearization, there exists a weak solution to our linear system, and our multilevel solv-
ers will converge to that solution. The constants c¢; and ¢, depend on physical parameters such as 7,1, and €, as well as the
previous Newton step iterations and time step approximations. However, they do not depend on the number of degrees of
freedom or the size of the finite element grids being used. In the next section, we discuss the energetics of complex fluid flow.

4. Energetics

While most physical systems can be described by a set of PDEs, usually an underlying energy law also describes the sys-
tem. In many cases, the PDE is actually derived from the energy laws via a calculus of variation (see e.g. [20]). The main idea
is that the change in the total energy of a system over time must equal the total dissipation of the system. If the system is
conservative, or there is no dissipation, then the total change is zero and it is a Hamiltonian system. Thus, the interaction or
coupling between different scales or phases plays a crucial role in understanding complex fluids. Any set of equations that
describe the system should then be a result of the energy laws. The energetic variational approach (EVA) takes the energy
laws of a complex fluid model and, using the least action principle (LAP) and the maximum/minimum dissipation principle
(MDP) [16-19], yields a weak form of the system, which we approximately preserve in our numerical simulations. The en-
ergy variation is based on the following energy dissipation law for the whole coupled system:

b) Etotal
ot

where E is the total energy of the system and D is the dissipation. The LAP, which is also referred to as the Hamiltonian
principle, or principle of virtual work, gives us the Hamiltonian (reversible) part of the system related to the conservative
force. At the same time, the MDP gives the dissipative (irreversible) part of the system related to the dissipative force.

In [4,5,13-15] and others, an energy law is developed for the Allen-Cahn phase-field model described above. The total
energy is a combination of the kinetic energy (driven by the fluid) and the internal energy (driven by the interface):

Etotal _ / {%‘u|2 +/1W(¢)}dx,
JQ

where W(¢) is the Ginzburg Landau mixing energy described above [4], thus representing a competition between two fluids
with their hydrophilic and hydrophobic properties. The dissipation is a result of a diffusive term from the viscosity of the
fluid and from the diffusion of the interface itself:

2

}dx.

D:/{M|Vu\2+5\¢|2}dx:/ {,u|Vu|2+},y
Q Y Q

= _D7 (25)

1
V-5 1)
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Thus, any system describing this behavior, such as Egs. (1)-(3) or the FOSLS formulation (15)-(22), should globally produce
results that approximately satisfy the following energy law:

d 1 (1, o -
E/Q{i‘“' +/1W(¢)}dxf /Q{mvm + iy

At the continuous level, the energy law can be derived directly from the FOSLS formulation (15)-(22). This is easily done,
since the FOSLS formulation is exactly equivalent to the Allen-Cahn equations in the strong form. As is shown in [4,5,13-15]
these equations yield the above energy law and, thus, so does system (15)-(22).

The overall energy law reflects the multi-scale, multi-physics nature of the system. As mentioned above, the variable ¢
represents the microscopic description of the mixture.

The kinematic assumption, ¢ = %+u - V¢, stands for the influence of macroscopic dynamics on the microscopic scale.
The form of the internal dissipation is the consequence that we are looking at the long (or macroscopic) time dynamics. This
brings us to the equation for ¢,

¢ - 1
Sruve=y(Vi- L@ 1)

1
V-5 (0 -1)¢

2
}dx. (26)

This “gradient flow” dynamics is another formulation of the near equilibrium, linear response theory [18,19].
As for the macroscopic force balance, the LAP gives the following Hamiltonian system, with y = 0:

aa—ltl+(u-V)u+Vp:—iV'(V¢®v¢)v
V'u:07

¢ _

ﬁ+u-V¢>—O.

This describes the transient dynamics of the system.
On the other hand, the MDP yields the dissipation of system, which stands for the long macroscopic time dynamics:

— uVu+ Vp = —%rﬁw.,

V-u=0,

¢ AT e
E+u.v¢7/<v¢+€2(¢ 1)4)).

Remark. Z¢V¢ = A(V% +L(¢* - 1)(1)) Vo =,V2pVe + iV (ﬁ(d)z - 1)2). This shows the consistency between the LAP
and the MDP [4].

System (1)-(3) is really the hybrid of these two systems.

Remark. It is worth pointing out that due to the generality of the formulation, analogies of (1)-(3) can be found in many
different physics. In particular, without the f941? (¢? — 1)?dx term, the system is equivalent to the resistive MHD system. In
fact, it is this understanding that allows us to arrive at a similar weak form for the FOSLS algorithms as in [11]. The choice of
using the gradient of ¢ as an auxiliary variable in (14) was made for this reason.

Finally, we point out that the advantage of the above energetic variation approach enables us to derive the thermody-
namic-consistent models involving different physics at different scales.

It should be noted that restricting to a finite-element space via finite elements yields a discrete energy law that may or
may not be equivalent to the continuous one. It is the aim of this paper to show numerically that the FOSLS finite-element
method, using H! conforming elements, is capable of globally preserving this energy law. An analysis of the relationship be-
tween the discrete energy law derived from the FOSLS discretization and the continuous setting, as well as other discretiza-
tions as in [5,14,15,35,36] remain to be shown and is the topic of future work.

5. Numerical results

In [11,12], an algorithm is devised to solve a system of nonlinear equations, £(u) = f. Starting on a coarse grid with an
initial guess there, the system is linearized and the linearized FOSLS functional is then minimized on a finite element space.
At this point, several algebraic multigrid (AMG) V-cycles are performed until there is little to gain in accuracy-per-compu-
tational-cost. The system is then relinearized and the minimum of the new linearized FOSLS functional is searched for in the
same manner. After each set of linear solves, the relative difference between the computed linearized functional and the
functional of the nonlinear system is checked. If they are close and near the minimum of the linearized functional, then it
is concluded that we are close enough to the minimum of the functional of the nonlinear operator and, hence, we have a
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good approximation to the solution on the given grid. Next, the approximation is interpolated to a finer grid and the problem
is solved on that grid. At this stage, the grid can be refined uniformly or locally. This process is repeated to yet finer grids until
an acceptable error has been reached, or until we have run out of computational resources, such as memory. If, as in the case
of the 2-phase flow equations, it is a time-dependent problem, the whole process is performed at each time step. This algo-
rithm is summarized in the following pseudocode.

Algorithm 1: Nested Iteration Newton-FOSLS AMG

for t =1 to max time step do

Go to coarsest grid

while fine grid resolution is not reached do

for n =1 to max Newton step do

Linearize first-order system

Minimize FOSLS functional

while functional of current approximation is large do
| Solve Az = b with AMG

end

Compute relative difference between linearized and nonlinear operator

if small then
| Exit Newton loop

end

end

Refine grid
end

Update time step
end

The main goal behind this algorithm is to reduce the amount of work needed to solve the system of equations. Relatively
cheap work is done on the coarse computational grid to get better starting guesses for the solution of the system on the finer
finite element grids. Then, less iterations are needed at the resolution that would require the most work. The algorithm de-
scribed above also takes into account the fact that resolving too much on coarse grids is unnecessary. Using the FOSLS func-
tionals as estimates of the errors, stopping criteria is implemented for each stage of the algorithm, optimizing the amount of
work per computational cost.

In addition to the nested iteration algorithm, adaptive local refinement is used. Again, using the FOSLS a posteriori error
estimates, an efficiency-based adaptive local refinement scheme, known as ACE [30,37] can be used fairly easily. The idea
behind this scheme is to predict the amount of work and the error reduction obtained from refining only certain portions
of the computational domain. Then, the optimal grid is chosen. In simulations of magnetohydrodynamics, which have similar
structure to the complex fluid problems described here, this scheme has been shown to reduce the amount of work by a fac-
tor of ten in the FOSLS framework [30,31].

For the following test problems, we use the FOSLS finite element method using bi-quadratic finite-elements on a tensor
product mesh, along with nested iteration, AMG, and adaptive local refinement. The details of the FOSLS finite-element
method are briefly explained in Section 3, but a more detailed analysis can be found in the referenced papers (e.g.
[6,7,22]). For a deeper discussion on the nested iteration approach see [12], and finally for a description of the adaptive
refinement scheme used see [30,37]. Here we show that, using these methods, we are able to solve the complex fluid prob-
lems well, while still adequately preserving the energetics of the system.

5.1. Two-phase flow

5.1.1. Coalescence

In this test problem, we start with two bubbles of a certain phase immersed in a fluid of a different phase on the unit
square, 2 =[0,1] x [0,1]. The initial interface between the two fluids is given such that the two bubbles are osculating or
“kissing”, and then the system is allowed to evolve. As a result, the two bubbles begin to coalesce into one and, eventually,
due to the dissipation in the system, the newly formed bubble slowly shrinks and is absorbed by the outside fluid. The initial
conditions for this system are similar to that in [4] and are as follows:

- (2)

¢ = tanh <—d1 (ZXV’Iy)) + tanh (—d2 (x,y)) -1,
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where

di(x,y) = /(x—0.38)" + (y — 0.5/ — 0.11,

and

dy(x,y) = \/(x — 0.62)° + (y — 0.57 — 0.11,

The parameters used are # =0.01, u=1, €=0.01, y =0.01, and 1 =0.0001.

A second-order fully implicit backward differencing formula (BDF-2) is used and allows us to take a larger time step for
the simulation than in previous work [4]. For the test problem shown, 100 time steps of size At=0.01 are taken. Plots of the
phase field, ¢, are given in Fig. 2. Here, one can see the coalescence of the two bubbles over time and the eventual dissipation.
In addition, more refinement is done in the region of the interface. Therefore, most of the computation is being focussed on
resolving this region, which is driving the physics in the system. In Fig. 3, we have zoomed in on the top middle image (from
time 0.1 during the coalescence) and removed the color fill-in in order to show in more detail where the adaptive refinement
is being performed.

To quantify how well the nested iteration algorithm with adaptive local refinement performs, the simulation was run
using uniform refinement. An estimate of the work is computed by calculating the number of non-zeroes in each discrete
system and determining how many equivalent fine-grid matrix-vector operations are performed. We call this measure a
work unit (WU), and it is a measure of the cost of performing one relaxation sweep, such as Gauss-Seidel or Jacobi, on
the finest grid of the simulation. Table 1 shows that, while using adaptive refinement requires more work units (i.e. more
V-cycles are needed to solve the problem), on average the number of non-zeroes on the finest grid is about one-tenth of that
for uniform refinement. This corresponds to a work ratio of about 0.21. In other words, using adaptive local refinement saved
about 80% of the computational cost. Therefore, on average, the above strategies on this test problem cost the equivalent of
performing less than 49 Gauss-Seidel relaxation sweeps on a quadratic uniform grid with 65,536 (256 x 256) elements. It
should be noted here that the functional or estimate of the error for adaptive refinement is about half of the functional ob-
tained from using uniform refinement on average. Both schemes got below the prescribed tolerance, but, on many time
steps, the adaptive algorithm got to a much lower error (occasionally by an order of magnitude). Therefore, as far as accu-
racy-per-computational cost, the adaptive refinement scheme may be even better than the numbers indicate. What we can
say is that it used less than 9% of the elements and took almost one-fifth of the computational time to solve the problem.

In addition, Table 2 shows that, for each refinement level, the number of Newton steps needed to solve the nonlinear
problem decreases from almost 5 on the coarse grids to 1 on the finer grids. For all time steps, on the finest-grid, only
one Newton step was needed. This greatly reduces the cost of the algorithm compared to if one were to only solve on the
finest grid.

t=0.1

Fig. 2. Phase field, ¢, at time t = 0.01, 0.1, 0.2, 0.4, 0.7, and 1.0. Red represents 1.0 and blue represents —1.0. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Phase field, ¢, at time t=0.1. Red represents 1.0 and blue represents —1.0. Zoomed in to show adaptive refinement. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1

Average estimates of work and accuracy using uniform refinement versus

adaptive local refinement.

Avg WU

Avg nonzeros

Avg functional

2271

530.56

Work Ratio
0.213

Uniform
281,292,867

Adaptive
24,955,707

0.456

0.265

Element Ratio
0.089

Table 2

Average Newton steps per grid level over all time steps. Level = 1 is the finest grid.

The first grid (level 10) uses bilinear elements.

Grid Elements Avg Newton Steps

10 4 4.6
9 4 2.2
8 16 2.9
7 471 2.7
6 84.9 2.3
5 178.1 2.0
4 417.7 2.0
3 1,005.0 1.1
2 2,084.9 1.0
1 58124 1.0

Next, we see in Fig. 4 that the energy law of this system is satisfied during the simulation. The total conservative energy
over the whole domain is decreasing and the change in energy coincides with the dissipation in the system. Thus, the numer-
ical simulation is resolving the expected physics of the system.

5.1.2. Square bubble

In this test problem, we start with a single bubble immersed in a fluid of a different phase on the unit square,
Q=10,1] x [0,1]. The initial interface between the two fluids is given such that the bubble is in the shape of a square. As
time evolves, the interface forces cause the bubble to transform to a circular shape before diffusing away. In the process,
oscillations between a square and diamond shape are formed. This reflects the elastic short-time behavior of the system.
The initial conditions for this system are similar to that in [14] and are as follows:
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x107° Total Conservative Energy: p=1y=0.01 » = 0.0001, BDF2 dt = 0.01
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Fig. 4. Energy laws for coalescence problem. Top: total conservative energy over time. Bottom: change in energy (asterix) over time versus negative
dissipation (circle).

t = 0.01 t =0.03 t = 0.07
t=0.18 t =0.25

Fig. 5. Phase field, ¢, at time t=0.01, 0.03, 0.07, 0.1, 0.18, and 0.25. Red represents 1.0 and blue represents —1.0. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

()

-1 otherwise

¢:{+1 ()€ -4 < -

1

473

0

1

The parameters used are u=0.1, €=0.02, y=0.01, and 1=0.1.
Again, a second-order fully implicit backward differencing formula (BDF-2) is used. For the test problem shown, 100 time
steps of size At =0.01 are taken. The phase field is shown in Fig. 5. As in the previous example, the refinement is being placed



J.H. Adler et al./Journal of Computational Physics 230 (2011) 6647-6663 6659

Fig. 6. Phase field, ¢, at time t=0.07. Red represents 1.0 and blue represents —1.0. Zoomed in to show adaptive refinement. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Newton steps per grid level for time step 3. Level = 1 is the finest grid.
Grid Elements Newton steps
9 16 10
8 64 4
7 112 5
6 208 5
5 463 5
4 1,423 4
3 3,766 3
2 12,793 3
1 40,030 1

in the appropriate regions and requires about 20% of the work that would be required if uniform refinement were used. A
zoomed in version of the top right plot (at time = 0.7) in Fig. 6 shows how the mesh is adaptively refined.

Due to the bigger jump at the interface, though, more Newton steps are needed in this problem than in the first. However,
using nested iteration results in many of these linearizations being performed on the coarser grids. As an example, at time
step 3, when the bubble begins to lose its square shape, the number of Newton steps goes from 10 to 1 as we move up
through the grids. See Table 3.

In Fig. 7, one can see that the energy laws are being satisfied once again. An initial increase in energy occurs before the
dissipation in the system takes over, causing the energy to decay. This is most likely due to the fact that the initial condition
of the phase field is discontinuous at the interface. Once the simulation is started, this function is immediately smoothed out
and the energy behaves as expected. By increasing 7, the elastic relaxation time in the system, the dissipation is increased
and actually causes the bubble to dissipate away much faster. In fact, the entire bubble vanishes after time step 30 and the
total energy goes to zero. This can be seen in the energy plots in Fig. 8. The tiny jump in energy appears to occur when the
region containing the bubble finally disappears and the system is changed to that of one fluid. With a smaller time step, this
transition occurs more smoothly.

5.2. MHD
As described above, the characteristics of the two-phase system is similar to that of resistive MHD. The main results and

description of this problem using the FOSLS and nested iteration framework can be found in [11,12,30]. However, here, we
briefly mention the energetics of the system. The MHD system can be written as follows:
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Fig. 7. Energy laws for square problem (y = 0.01). Top: total conservative energy over time. Bottom: change in energy (asterix) over time versus negative

dissipation (circle).
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Fig. 8. Energy laws for square problem (y = 0.1). Top: total conservative energy over time. Bottom: change in energy (asterix) over time versus negative
dissipation (circle).
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1.696 T T T T T T T T
1.694- .
>
o
3 1.692 —
i
1.69- o
1.583 1 1 1 1 1 1 1 | |
0 1 2 3 4 5 6 7 8 9 10
Time
x10~° Change in Energy over Time and Dissipation

Time

Fig. 9. Energy laws for mhd test problem. Top: total conservative energy over time. Bottom: change in energy (asterix) over time versus negative
dissipation (circle).

where u represents the fluid velocity and B represents the magnetic field. R, and S; are the fluid Reynolds number and mag-
netic Lundquist number, respectively. For this system, the energy law must satisfy the following equation:

d (1 o 1ol [[lowz. 1 oo
a,/g{i“” 5B }dx_—./Q{R—eNu\ +5IVB bax

A magnetic reconnection problem is simulated using the above numerical algorithm. Fig. 9 shows that the discrete energy
law is being satisfied. The total conservative energy decays as a direct result of the dissipation in the system. The oscillations
in the change in energy plot are due to a lower order differentiation being used to compute & after the simulation was com-
plete. Similar to the first two examples, it took on average of 10 WU to solve the problem using nested iteration and adaptive

local refinement.

6. Discussion

This paper shows that using the Newton-FOSLS finite-element formulation, along with nested iteration, algebraic multi-
grid, and adaptive local refinement, accurately resolves two-phase flow simulations while still preserving the energetics of
the system. The numerical algorithms used were designed in a general setting and have the advantage of reducing the
amount of computational cost. For the two-phase flow problems, it is possible to resolve the physics in the equivalent of less
than 50 fine-grid relaxation sweeps for each time step. This is accomplished by reducing the amount of work done on highly
resolved grids and by reducing the number of elements needed to solve the problem via adaptive local refinement. As a re-
sult, complicated systems of PDEs can be solved very efficiently without losing the ability to measure certain physical quan-
tities. This paper shows that, when applied to two-phase flow simulations, all the advantages of using implicit finite element
methods are obtained, and the FOSLS methodology is capable of capturing the important aspects of the model, such as the
energy laws.

Despite the success of the above algorithms in capturing the correct energy laws efficiently, there has been one bottle-
neck. In all the simulations, classical algebraic multigrid (AMG) was used to solve the discrete linear systems. Classical
AMG was designed for scalar elliptic problems and M-matrices. As can be seen in Fig. 10, the average convergence factors
for AMG over each time step can be quite poor when it is used on systems for which it was not designed. Here, the conver-
gence factor refers to the average reduction of the residual of the algebraic linear system after one V-cycle. While it is always
bounded away from 1, one can see that the worse the AMG convergence factor gets, the more computational work is needed
to solve the problem. Therefore, future work will involve investigating various multigrid methods that will be more well-
suited to the test problems described above. Algebraic methods that are designed more specifically for systems of PDEs will
be studied as well as geometric multigrid. All the domains have been well structured and, therefore, it is possible to use more
of the geometric information to create a better solver. If it is possible to improve the linear solver using these methods, then
the amount of work can be reduced even further.
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Work Units and AMG Convergence Factors vs Time
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Fig. 10. Work units per time step as well as average convergence factor per time step.

Finally, it should be noted that in all the above tests performed for the two-phase flow problems, a fixed viscosity has
been used. In [35,36], it has been shown that by decreasing the viscosity, energy-preserving methods are improved and bet-
ter approximate the corresponding energy law. In the FOSLS setting, this may be the case as well and it is an ongoing project
to test the schemes above on various problems with changing viscosities, including test problems where the two fluids have
different viscosities. While the FOSLS method still converges and the energy law is satisfied in a similar fashion, the conver-
gence of the numerical scheme will be slower due to the fact that the problem becomes less elliptic. Possible remedies are to
rescale the system using the viscosity and, thus, create a more well-conditioned system. This has been analyzed in the MHD
framework in [11,33].
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