
MATHEMATICS OF COMPUTATION
Volume 84, Number 295, September 2015, Pages 2191–2220
S 0025-5718(2015)02934-2
Article electronically published on February 26, 2015

GRADED MESH APPROXIMATION IN WEIGHTED SOBOLEV

SPACES AND ELLIPTIC EQUATIONS IN 2D

JAMES H. ADLER AND VICTOR NISTOR

Abstract. We study the approximation properties of some general finite-
element spaces constructed using improved graded meshes. In our results, ei-
ther the approximating function or the function to be approximated (or both)
are in a weighted Sobolev space. We consider also the Lp-version of these
spaces. The finite-element spaces that we define are obtained from conformally
invariant families of finite elements (no affine invariance is used), stressing the
use of elements that lead to higher regularity finite-element spaces. We prove
that for a suitable grading of the meshes, one obtains the usual optimal approx-
imation results. We provide a construction of these spaces that does not lead
to long, “skinny” triangles. Our results are then used to obtain L2-error esti-
mates and hm-quasi-optimal rates of convergence for the FEM approximation
of solutions of strongly elliptic interface/boundary value problems.

Introduction

Consider the typical problem of approximating the solutions of a mixed boundary
value diffusion problem with zero Dirichlet and Neumann boundary conditions,

(0.1)

⎧⎪⎨
⎪⎩

− div(A∇u) = f in Ω,

ν ·A · ∇u = 0 on ∂NΩ,

u = 0 on ∂DΩ.

Here, ν is the outward normal vector to the boundary, Ω is a polygonal domain
in two space dimensions (2D) with straight faces and f ∈ Hm−1(Ω). We allow
piecewise smooth coefficients, so that transmission (or interface) problems can also
be considered. This problem arises in many practical applications. Typically one is
interested in approximating the solution, u, with some simpler functions or at least
in approximately computing some quantities of interest associated to u. One of
the most commonly used methods to approximate u is the Finite-Element Method
(FEM). See for instance [8, 14, 18, 23, 42, 44] for introductions to this method. The
results here extend almost without change to systems such as the elasticity system
and to nonhomogeneous boundary conditions. We can also include lower order
terms, as long as the basic regularity and well posedness properties of equation
(0.1) are preserved. We also extend certain results of this paper to general elliptic
problems of order 2μ (μ ≥ 1).
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2192 J. H. ADLER AND V. NISTOR

The standard applications of FEM to approximate the solution, u, of equation
(0.1) requires it to possess good regularity properties. However, it is known [7, 28,
29, 32] that the solution, u, of this equation on non-smooth domains is typically
not in Hm+1(Ω), but rather has the limited regularity, u ∈ Hs−ε(Ω), where s = sΩ
is a constant associated to Ω and where ε > 0 is arbitrary. This is not an artifact
of the method, but it does lead to decreased rates of convergence in the FEM
approximations. Due to its practical importance, many works have been devoted
to correcting this deficiency; see for example [1, 4, 9–14,25, 27, 30, 34, 37].

A common result of the above research is that the solution, u, of equation (0.1)
has better regularity properties in a weighted Sobolev space [32, 33, 37]. More
precisely, let rΩ(x) denote the distance from x to the set of singular points of Ω
[37] and define the Lp-based weighted Sobolev space of order m and weight a by

(0.2) Wm,p
a (Ω) = {v : Ω → C, r

|α|−a
Ω ∂αv ∈ Lp(Ω), |α| ≤ m}.

For the most part, we consider p = 2 and denote Wm,2
a (Ω) = Km

a (Ω), which are
Hilbert spaces. However, in general, Lp-based weighted Sobolev spaces make the
results useful for some nonlinear problems and some of the results are extended to
these cases. Then, if f ∈ Hm−1(Ω), we have that u ∈ Wm+1,2

a+1 (Ω) = Km+1
a+1 (Ω), for

a > 0 small enough. (More precisely, in the case of the Poisson problem with only
Dirichlet boundary conditions, a < π/αmax, where αmax ∈ (0, 2π] is the maximum
angle of Ω). In two dimensions, this is enough to recover quasi-optimal rates of
convergence for the finite-element approximations of u [1, 9, 12, 37]. The proof of
this result depends essentially on an approximation property of the solution, u, in
weighted Sobolev spaces using graded meshes. More precisely, it was shown (see
for example [3,9,12,37]) that there exists a sequence of nested meshes, Tn, with the
following property: Let Sn be the sequence of finite-element spaces of continuous
functions on Ω that are restricted on each triangle of Tn to a polynomial of order m.
Then, dim(Sn) → ∞ and there exists a sequence of interpolation operators In and
a constant C > 0 with the property ‖u−In(u)‖H1(Ω) ≤ C dim(Sn)

−m/2‖u‖Km+1
a+1 (Ω),

for m ≥ 1. Since there exists a constant C such that ‖u‖Km+1
a+1 (Ω) ≤ C‖f‖Hm−1(Ω),

the above approximation becomes

(0.3) ‖u− In(u)‖H1(Ω) ≤ Ca dim(Sn)
−m/2‖f‖Hm−1(Ω),

for some constant Ca > 0. This is the same result that one would obtain in the
classical case of quasi-uniform meshes, if the solution u were in Hm+1(Ω). See
also [38], where several numerical tests and comparisons with other methods were
provided.

In this paper, we extend the approximation result of equation (0.3) above in
several ways and offer different variants of the construction of the sequence of
graded meshes Tn. For instance, we offer a construction that yields a minimum
angle condition independent of m. This is relevant for the hp-version of the FEM
as long skinny triangles are avoided. We also include interfaces, in the sense that
we partition the domain, Ω, into several straight polygonal subdomains, Ωj , and

only assume u ∈ Km+1
a+1 (Ωj) for all j, but u ∈ K1

a+1(Ω) for the entire domain.
Another new feature presented in this paper is that we consider finite-element

spaces with higher regularity, forcing one to consider finite-element spaces gen-
erated by conformally invariant families (this definition is slightly more general
than the one in Section 2.3 of [23], for instance). Therefore, the constructions
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GRADED MESH APPROXIMATION 2193

are not restricted to Lagrange finite elements. This may be useful for higher or-
der problems, so error estimates are also provided in higher Sobolev norms. See
[17, 20, 31, 40], for example. In addition, estimates in Lp-based Sobolev norms are
provided, which may be useful for nonlinear problems. Finally, in the application
to the Finite Element Method for the second order problem, (0.1), we also provide
L2-error estimates using the Aubin-Nitsche trick.

To formulate the general form of problem (0.1) more precisely, assume that

the straight polygonal domain, Ω, is decomposed as Ω =
⋃K

k=1 Ωk, where Ωk are

disjoint straight polygonal domains. The set Γ := ∂Ω �
⋃K

k=1 ∂Ωk, that is, the
part of the boundary of some Ωk that is not contained in the boundary of Ω, is
called the interface, as usual. Then, assume that the coefficients A = [aij ] have
only jump discontinuities across the interface Γ. That is, the restriction to any of
the domains, Ωk, of any of the coefficients, aij , extends to a smooth function on

Ωk. Also, equation (0.1) is formulated in a weak sense, which implies the usual
matching and jump conditions at the interface. (See Section 3 for details.) We
also assume that − div(A∇) is uniformly strongly elliptic, in the usual sense; see
equation (3.2).

The paper is organized as follows. In Section 1, we describe the family of finite el-
ements that we consider and we also state the outline of the problem. In particular,
we consider more general finite elements that are not necessarily affine equivalent
in order to obtain higher regularity approximation spaces. In Section 2, we state
and prove the approximation results. We state these for general elliptic problems of
order 2μ, μ ≥ 1, and in general Lp-based Sobolev spaces when possible. For μ = 1
and p = 2, we extend our approximation results to some augmented Sobolev spaces
that arise in our treatment of transmission and mixed boundary value problems.
In addition, we describe the graded meshes and how they produce optimal results
for these types of problems with singularities. Section 3 gives examples on how the
above results can be applied to finite-element discretizations for certain problems,
such as transmission/interface and mixed boundary value problems. This includes
an L2-error estimate as well as a description on how to obtain classical “textbook”
hm-error estimates. Finally, we make some concluding remarks toward the end of
the paper.

1. Conformal families of finite elements

Consider a bounded polygonal domain, Ω ⊂ R2, with straight edges. Also assume
that a disjoint decomposition of the boundary into “Dirichlet” and “Neumann”
parts, ∂Ω = ∂DΩ ∪ ∂NΩ, is given with ∂DΩ a closed subset, and both ∂DΩ and
∂NΩ sets with finitely many components.

This section explains the type of finite elements considered in this paper. The
reader may skip this section at the first reading and go to the next section, assuming
for instance that orderm Lagrange elements are used, in which case the construction
is simpler.

1.1. A typical finite element. Consider (essentially) the framework of Ciarlet
[23, 24]. The main difference in our approach is that we emphasize more the inter-
polant rather than the degrees of freedom. Also, the families will not be, in general,
affine equivalent, so we do not consider reference finite elements.
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2194 J. H. ADLER AND V. NISTOR

Consider an arbitrary triangle T , fixed throughout this subsection. Denote by
Pj , the space of polynomials P : R2 → R of degree (at most) j, and fix a dimension-
N space PT ,

(1.1) Pm ⊂ PT ⊂ Pm′ .

In addition to the integer parameters m and m′ introduced above in equation (1.1),
we also fix two integers s′ ≤ s. The integer s determines the smoothness of the
functions that can be interpolated (by the higher order of the derivatives appearing
among the degrees of freedom) and is called the degree of the interpolant. The
integer s′ is defined such that the resulting finite-element (FE) space has smoothness

Hs′+1. The integer m is called the polynomial degree of approximation and the
integer m′ is called the maximum polynomial degree of the FE spaces.

Then, consider linear functionals, �i, on Cs(R2), 1 ≤ i ≤ N = dim(PT ), called
degrees of freedom, whose restrictions to PT form a basis of P∗

T , where P∗
T denotes

the space of linear functionals on PT . Assume that the degrees of freedom are of
one of the following three types, with q1 and q2 denoting polynomials:

(1.2)

�i : PT → R, �i(q1) = ∂j
x∂

k
y q1(z), where z ∈ T and j + k ≤ s ,

�i(q1) =

∫
σ

q2(x, y)∂
k
ν q1(x, y)dσ , where σ = an edge of T and k ≤ s, or

�i(q1) =

∫
T

q2(x, y)q1(x, y)dxdy.

If �i is of the first type (type I), then we say that its support is z. If �i is of the
second type (type II), then we say that its support is σ. Finally, if �i is of the third
type (type III), we say that its support is T . Thus, the support of �i is the support
of the corresponding distribution. If �i is of type II, then ν is a unit normal vector
to σ and dσ is the arc length measure on σ. The motivation for considering degrees
of freedom that are not type I is provided, for instance, by [5, 6].

Denote by ΣT := {�i} the set of the given linear functionals, which are assumed
to be a linearly-independent set. Since ΣT is a basis of P∗

T , there exists a dual basis
{qi} ⊂ PT such that

�i(qj) = δij ,

and, then, we define the interpolation operator as usual,

(1.3) IT = IT,PT ,Σ : Cs(T ) → PT , IT (f) =

N∑
i=1

�i(f)qi.

(Recall that δij denotes the Kronecker symbol: δii = 1 and δij = 0 if i �= j.) The
fact that {qi} is the dual basis to {�i} ensures that I2T = IT , and, hence, IT is a
projection onto PT , that is IT (q) = q, for all q ∈ PT . Then, ΞT := (T,PT , IT ) is
a finite element on T . The support of ΞT is the set consisting of the supports of
the degrees of freedom �i ∈ ΣT . Note, however, that the set ΣT is not determined
by the triple ΞT := (T,PT , IT ), in the sense that the same finite element can be
obtained from a different choice of degrees of freedom. It is in this sense that we
choose to make IT a more important ingredient of the definition than the set ΣT .
The reason for this choice is the better invariance properties of the interpolation
operator, IT , than those of the set ΣT ; see below. This is the main difference to
[23]. Note that the support of ΞT is independent on the choice of the degrees of
freedom.
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GRADED MESH APPROXIMATION 2195

For any open subset U ⊂ Rd, denote

(1.4) W b,p(U) = {v : U → C, ∂αv ∈ Lp(Ω), |α| ≤ b} , b ∈ Z+ ,

as the nonweighted analogues of the spaces Wb,p(Ω) introduced in equation (0.2).
Then, W b,p(Rd) ⊂ Cs(U) for b > s + d/p, by the Sobolev embedding theorem. In
particular, we obtain for b > s+ d/p that IT introduced earlier also defines a linear
map,

(1.5) IT = IT,PT ,Σ : W b,p(R2) → PT .

Finally, if T ′ is any other triangle and L is an invertible affine map (that is a
linear map plus a translation) such that L(T ) = T ′, then L can transport PT , IT ,
and the support of ΞT = (T,PT , IT ) to T ′ as usual. Explicitly, let

(1.6) PT ′ := {q ◦ L−1, q ∈ PT } and IT ′(f) = IT (f ◦ L) ◦ L−1.

Then, denote by L(IT ) = IT ′ , L(PT ) = PT ′ , and

(1.7) L(ΞT ) := (L(T ), L(PT ), L(IT )) = (T ′,PT ′ , IT ′) = ΞT ′ ,

the corresponding finite element on T ′.

1.2. Assumptions on the families of finite elements. Assume that to each
triangle, T , in the plane there is associated a finite element ΞT = (T,PT , IT ) and
that this family depends continuously on T (in an obvious sense; see Assumption
1). The following three assumptions are made for this family, F = {ΞT }, of finite
elements. First, in order to obtain interpolation estimates in the usual way, we
assume that the family is continuous and conformally invariant, two conditions
that are defined shortly.

In order to introduce the continuity condition, we first identify the set of triangles
in the plane as a subset of the set of triples {(A,B,C) : A,B,C ∈ R

2}/S3, where
the quotient by the group, S3, means that we identify two triples if they differ
by a permutation. Here, S3 is the set of permutations of three elements. The
set of triangles are, therefore, a subset of R6/S3. Let T0 be a fixed (reference)
triangle. Then, for any other triangle, T , there exists exactly six affine maps LT :
T → T0, such that LT (T ) = T0 (they all differ by a permutation of the vertices
of T0). Next, fix a triangle, T , and a small neighborhood, U , around it. Then,
if the neighborhood, U , is small enough, we can choose a consistent (continuous)
ordering of the vertices of the triangles, T ′ in U . For example, if the triangle has
(distinct) vertices, A, B, and C, we consider the neighborhood defined by all triples
(A′, B′, C ′), where |AA′|, |BB′|, |CC ′| < ε, with ε < min{|AB|, |BC|, |CA|}/2. By
choosing an ordering on the vertices of T0 as well, we obtain a unique choice of
an affine map, LT ′(T ′) = T0, for T

′ ∈ U , by requiring that LT ′ preserve the order
of the vertices. Then, the family, LT ′ , depends continuously on T ′. If T = T0,
we arrange the vertices, such that LT = I and then all the other affine maps,
LT ′ , are close to the identity transformation, I. Recall that LT ′(IT ′) is defined by
LT ′(IT ′)(f) = IT ′(f ◦ LT ′) ◦ L−1

T ′ , as in equation (1.6).

Definition 1.1. We say that the family, F , has the continuity property, if for
any fixed T and a suitable small neighborhood U of T that provides a continuous
choice of affine maps, LT ′(T ′) = T0 for T ′ ∈ U , we have that the resulting family
of interpolants (linear maps), LT ′(IT ′) ∈ L(Cs(T0),Pm′), depends continuously on
T ′ ∈ U .
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2196 J. H. ADLER AND V. NISTOR

Since all choices of the family, LT ′ , differ by a permutation of the vertices of
T0, we have that the above definition makes sense (that is, it is independent of the
choice of the family, LT ′).

In addition, we need the natural definition of a conformal invariance for the
family, F . As usual, we say that F is conformally invariant if for any conformal
linear map, L (the composition of dilations and isometries), such that L(T ) = T ′,
then L(ΞT ) = ΞT ′ .

Assumption 1: Continuity and conformal invariance. We assume that the
family, F = {ΞT }, ΞT = (T,PT , IT ), has the continuity property and is conformally
invariant.

Notice that the continuity condition implies the continuity of the supports of the
elements, ΞT . In particular, if one of the finite elements has an edge in its support,
then all the edges of all triangles are in the supports of the corresponding ΞT . Next,
we want the resulting finite-element spaces to have smoothness Cs′ .

Assumption 2: Matching of derivatives. Let σ be an edge and choose any
triangle T with σ as an edge. Also, denote by ΣT,σ the set of degrees of freedom
�i ∈ ΣT with support contained in σ. We assume that if q ∈ PT is such that
�i(q) = 0 for all �i ∈ ΣT,σ, then ∂k

ν q = 0 on σ for all k ≤ s′ (here, as before, ν is
the normal derivative to σ).

The third assumption has to do with constructing degrees of freedom of the
associated finite-element space. Let T be a triangle with associated finite element
ΞT . Fix a set of degrees of freedom, ΣT , defining ΞT . We shall regard ΣT as
a subset of the space, Cs(R2)′, of continuous linear maps Cs(R2) → R. In order
to formulate the assumption on the meshes, we need to introduce the following
notation:

(1) Let z be a vertex of T , then denote Vz as the linear span of the degrees of
freedom supported on z.

(2) Let σ be an edge of T , then denote Vσ as the linear span of the set of
degrees of freedom of ΣT supported on σ.

(3) Let σ be an edge of T and z ∈ σ be a point that is not a vertex of σ,
then denote Vσ,z as the linear span of the set of degrees of freedom of ΣT

supported on z.
(4) Finally, denote VT as the set of degrees of freedom of ΣT supported on T .

Then, the third assumption on the family F of finite elements is as follows.

Assumption 3: Independence of degrees of freedom. The sets Vz, Vσ, and
Vσ,z, introduced above, do not depend on T (they depend only on the indicated
subscripts).

1.3. Examples of families of finite elements. We now construct examples of
families, F = {ΞT }, ΞT = (T,PT , IT ), of finite elements satisfying the three as-
sumptions of the previous subsection, where T ranges through the set of all triangles.

The most important example is also the simplest: Lagrange triangles of type (m)
[18, 23]. Recall that in this case, m = m′ and s′ = s = 0, so PT = Pm for any
triangle T . The degrees of freedom are given by the evaluations at the points z ∈ T
that, in barycentric coordinates on T , are of the form [λ0/m, λ1/m, λ2/m], where
λ1, λ2, and λ3 are integers. In fact, these families are even affine invariant (not
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GRADED MESH APPROXIMATION 2197

just conformally invariant) [18,23], and affine invariant families have the continuity
property of Definition 1.1.

Higher regularity finite-element spaces are needed for fourth order problems,
such as the bi-Laplacian [39,43] and in certain formulations of second order elliptic
problems using the least-squares finite-element method [13, 15, 26, 34]. Two exam-
ples that yield C1-finite elements are the Argyris and the Bell triangle [23]. The
Argyris triangle provides an example with m = m′ = 5, s′ = 1, and s = 2. The
degrees of freedom are all the partial derivatives of order ≤ s = 2 at the vertices
and the normal derivative at the midpoints of the edges (so N = 21). The Bell tri-
angle is similar, but m = 4 (m′, s, and s′ are the same). Both the Argyris and Bell
triangles require C2-regularity of the function to be approximated (in the domain
of the interpolant), while yielding only C1-regularity for the resulting finite-element
space. Since the degrees of freedom in the Argyris and Bell triangles depend only
on the geometry of the triangle, and not on the particular coordinate system, these
families of finite elements satisfy Assumptions 1 and 2. Thus, the results in this
paper apply to these families.

1.4. Finite-element space and interpolation. With the notation and the as-
sumptions of Subsection 1.2, let F denote the given family of finite elements ΞT .
We now extend the constructions of that subsection to a mesh, T = {Tj}, on Ω
yielding a finite-element space, S(T ,F) = S(T ), and an interpolation operator,
IT ,F = IT , as follows. Recall, that a mesh T on Ω is a set of disjoint (open) trian-

gles, Tj ⊂ Ω, satisfying
⋃
T j = Ω. We also assume that ∂DΩ, the Dirichlet part of

the boundary, is a union of edges of triangles, T ∈ T . Hence, the Neumann part
of the boundary, ∂NΩ, has the same property. Eventually (beginning with Section
2), we require the triangles of T to be aligned to the interface. For this discussion,
though, this is not necessary. We also assume that the meshes are conforming,
meaning, as usual, that if the closures Ti and Tj of two triangles Ti and Tj of this

mesh intersect, then their intersection Ti ∩ Tj is either a vertex or an edge of these
triangles.

Consider for each triangle, T , the space PT and the support of the finite element
ΞT . The union of the supports of all the finite elements, ΞT , is the support of T .
Recall the notation introduced in Subsection 1.2 and consider the following. For
each vertex z of T , consider a basis Σz of the set Vz. For each edge σ of T , consider
a basis Σσ of Vσ. Finally, for each edge σ of T and z ∈ σ that is the support of
some degree of freedom, consider a basis Σσ,z of Vσ,z. Notice that the sets Σz, Σσ,
and Σσ,z are defined using a triangle T of the mesh. However, by Assumption 3 of
Subsection 1.2, these sets do not depend on the choice of T . Then, the set ΣT ,F
of degrees of freedom associated to T and F is defined as the union of the sets Σz,
Σσ, Σσ,z considered above, and of the basis of all the spaces VT , where T ranges
through all the triangles of T .

We now define the finite-element space, S(T ) = S(T ,F), associated to F :=
{ΞT = (T,PT ,ΣT )} and T as follows. Consider the set of families, (fT ), fT ∈ PT ,
for all T ∈ T . Such a family, (fT ), is calledmatching if �i(fT ) = �i(fT ′) and if T and
T ′ are two adjacent triangles of T , such that �i ∈ ΣT ,F is a degree of freedom that
is common to both T and T ′ (that is, it has support contained in the intersection
of T with T ′). Then,

(1.8) S(T ,F) := {(fT ), fT ∈ PT is a matching family } .
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2198 J. H. ADLER AND V. NISTOR

Since this paper also deals with higher order equations, it is convenient to im-
pose the boundary conditions in the approximation spaces later on. The plan is
to obtain the approximation results for the interpolant without imposing bound-
ary conditions and, then, to show that the resulting interpolant does satisfy the
boundary conditions.

Let u ∈ Cs(Ω). Then, for each triangle T in the mesh T , the interpolant uT :=
IT (u) ∈ PT is defined, where IT is associated to T and the family F := {ΞT },
ΞT = (T,PT , IT ), as before. The assumptions from Subsection 1.2 on the finite
element shows that the collection (uT ) is a matching family, so it is in S(F). We
then define

(1.9) IT ,F (u) = (IT (u)) ∈ S(T ,F).

2. Discretization error estimates and κ-refinements

The purpose of this section is to describe a sequence of (graded) triangular
meshes, Tn, in the domain, Ω, that provide quasi-optimal approximations of func-
tions in suitable weighted Sobolev spaces. In particular, we extend the approx-
imation results of [12, 37] from Lagrange elements to the more general elements
described above. We also consider approximations in other norms. Let m ≤ m′

and s′ ≤ s be as in the previous section. That is, the integer m is the polynomial
degree of approximation, the integer m′ is the maximum polynomial degree of the
FE spaces, the integer s is the degree of the interpolant, and the integer s′ + 1
is the smoothness of the FE space. Also, we consider a continuous family, F , of
conformally invariant finite elements, as described above in Subsection 1.2.

Next, consider the interfaces. Recall that the domain, Ω, is a polygonal domain
with straight edges (called a straight polygon). For simplicity, we do not allow for
cracks or vertices that touch the boundary. The case of cracks would be very similar
to that of the interface, but would allow functions with jump discontinuities along
the crack. We leave it to the reader to make the necessary changes to deal with
cracks. On the other hand, when considering mixed boundary conditions, it is well
known that singularities appear at the points where the boundary conditions change
(from Dirichlet to Neumann). These singularities are very similar in structure to
the singularities that appear at geometric vertices. Thus, we define the set V of
singular points of Ω as the set where singularities of the solutions of elliptic partial
differential equations may arise. These consist, in our case, of all the geometric
vertices of Ω, all points where the type of boundary conditions change, all points
where the interface touches the boundary, and all the nonsmooth points of the
interface. (If cracks were allowed, then the tips and ends of the cracks would be
included as well as the nonsmooth points of the cracks).

Assume that Ω =
⋃K

j=1 Ωj , with Ωj also straight polygons. Assume the domains,

Ωj , are open and disjoint. For the numerical solution of the problem (0.1), we are
looking to approximate a function u ∈ Kμ

a+b+μ(Ω), such that the restriction of u to

any of the subdomains, Ωj , satisfies u ∈ Km+μ
a+b+μ(Ωj) for all j. However, here, we

think of u as the solution of an elliptic problem of order 2μ, generalizing problem
(0.1), and of a > 0 as a constant that depends on that problem. To formulate the
approximation results, we do not need u to be a solution of an elliptic problem,
but only to belong to a suitable weighted Sobolev space. Moreover, we consider
Lp-based Sobolev spaces Wm+μ,p

a+b+μ(Ω), in view of possible applications to nonlinear
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GRADED MESH APPROXIMATION 2199

problems, as suggested by one of the referees. Also, b ∈ R is a parameter that is
considered in view of further applications to the least squares finite-element method
[34]. It is, therefore, convenient to assume that the initial refinement of Ω is such
that the interface is resolved exactly by the meshes, that is, the interface is a union
of the edges of the meshes that are considered. It turns out that it is enough to
assume that the initial mesh, T0, resolves the interface exactly.

For the remaining part of this paper, the assumptions that the boundary of Ω
and the interface Γ are piecewise linear will be crucial, in order to avoid approxi-
mating the boundary and the interface with finite elements, which is an important,
but completely different problem. For simplicity of the theoretical analysis, we
again assume that there are no cracks. We note, however, that the mesh refine-
ment in the case of cracks is completely similar, as long as one resolves the crack
exactly and allows for discontinuous approximation of functions along it. (From an
implementation point of view, this amounts to doubling the points on the crack,
except at the tips.)

2.1. Approximation away from the singular points. We start by discussing
the simpler approximation of the solution, u, away from the singular points. Recall
that all estimates in the spaces Km

a (Ω) localize to subsets of Ω.
Let P be any polygonal domain. In the applications considered here, P is a subset

of Ω. Let T be a mesh of P and let S(T ,F) be the associated finite-element space
as described in Section 1. By a mesh or a triangulation of P we shall mean the
same thing, since we only consider conforming meshes.

We denote by uI = IT ,F (u) ∈ S(T ,F) the interpolant of u. The interpolant
IT (u) = IT ,F (u) has the following approximation property that generalizes classical
results from [8,18,23,42]. Many of the results below hold in greater dimensions, so
we introduce d to be the dimension of the domain, assuming though that d = 2 for
most of the results in this paper. In addition, note that when possible we consider
the more general weighted Sobolev spaces, Wm,p

a , and we indicate them by Km

when we assume that p = 2.
Recall that |u|p

W b,p(P)
:=

∑
|α|=b ‖∂αu‖pLp(P) for 1 ≤ p < ∞ and for p = ∞ we

use the “max” value.

Theorem 2.1. Fix 1 ≤ p ≤ ∞. Also, let α > 0 and 0 ≤ c < b ≤ m + 1 be fixed
integers, with m as in equation (1.1), b > s+d/p and c ≤ s′+1. Then, there exists
a constant C(α,m) > 0 with the following property. Let T be a triangulation of
P and assume that all triangles T in T have angles ≥ α and sides of length ≤ h.
Then, the interpolant uI := IT ,F (u) ∈ S(T ,F) satisfies

|u− uI |W c,p(P) ≤ C(α,m)hb−c|u|W b,p(P),

for all u ∈ W b,p(P).

This result is well known for affine invariant families [18,23]. The main point of
this proof is to extend it to conformally invariant families of finite elements.

Proof. Consider a triangle, OAB, as shown in the left side of Figure 1 and denote
by Ô, Â, and B̂ the measures of its angles. Denote by S the set of triangles, OAB,
with the following properties:

(1) O = (0, 0) is the origin,
(2) A = (x, 0) is on the positive x-axis (that is, x > 0),
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2200 J. H. ADLER AND V. NISTOR

(3) the angles of the triangle satisfy Ô ≤ Â ≤ B̂ (so |AB| ≤ |OB| ≤ |OA|),
and

(4) B is in the upper half-plane.

Then, any triangle, T , in the plane is congruent to a unique triangle, T1 in S.
Denote the set of triangles, OAB in S, for which |OA| = x, by Sx. Since the set of
conformal mappings contains the set of dilations, we have that every triangle, T ,
is conformally equivalent to a triangle, T1 ∈ S1. The vertex, B, then completely
determines the triangle, OAB in S1 (since O and A are fixed). Therefore, the set,
S1, identifies with the set

(2.1) B := {B = (x, y) ∈ R
2, y > 0, x2 + y2 ≤ 1, and (x− 1)2 + y2 ≤ 1}.

The set of triangles in S1 that have all angles ≥ α, hence, form a compact set,
Kα ⊂ S1. See the right side of Figure 1.

Since the range of each of the interpolants, IT , contains the space, Pm, of poly-
nomials of degree ≤ m and b ≤ m+ 1, we have that

(2.2) |u− IT (u)|W c,p(T ) ≤ CT |u|W b,p(R2),

by the Bramble-Hilbert Lemma [18,23]. We claim that the constant CT in equation
(2.2) can be chosen to be independent of T ∈ Kα ⊂ S1 and, hence, to depend only
on α and c < b ≤ m.

More precisely, assume that for all triangles T we always choose the best (small-
est) value for CT . Then, we claim that CT is bounded on Kα. Indeed, this follows
from the continuity of the family of interpolants, IT , and the compactness of the set,
Kα, as follows. Assume by contradiction that we cannot find a common constant
bounding all the constants, CT , with T ∈ Kα. This means that for each n, we find
a triangle, Tn ∈ Kα, for which the best CTn

≥ n. Since Kα is compact, we then find
a convergent subsequence, Tnk

→ T ′ ∈ Kα. Replacing Tn with this subsequence,
we assume that Tn → T ′ (see the discussion before Definition 1.1 for the definition
of convergence of triangles). Choose affine maps, Ln, such that Ln(Tn) = T ′. Since
Tn → T ′, we assume that Tn → I, where I denotes the identity transformation.
Also, the continuity property (Assumption 1) gives that Ln(ITn

) → IT ′ as n → ∞
in the space of continuous linear maps, L(W b,p(T ′),Pm′). Denoting by v = u ◦L−1

n

and noticing that Tn forms a bounded family of affine maps, we have that there ex-
ists a constant Cb > 0 independent of n, such that |w|W c,p(Tn) ≤ Cb|w◦L−1

n |W c,p(T ′)

and |v|W b,p(T ′) ≤ Cb|u|W b,p(Tn) for all w ∈ W c,p(Tn) and u ∈ W b,p(T ′), which gives

|u− ITn
(u)|W c,p(Tn) ≤ Cb|u ◦ L−1

n − ITn
(u) ◦ L−1

n |W c,p(T ′)

= Cb|v − Ln(ITn
)(v)|W c,p(T ′)

≤ Cb

(
|v − IT ′(v)|W c,p(T ′) + |IT ′(v)− Ln(ITn

)(v)|W c,p(T ′)

)
≤ Cb(CT ′ + ε)|v|W b,p(T ′) ≤ C2

b (CT ′ + ε)|u|W b,p(Tn) ,

for large n. Thus, CTn
≤ C2

b (CT ′ + ε) for large n, which contradicts the fact that
CTn

→ ∞. (The constant Cb obtained from the fact that the family Tn is bounded
satisfies, in fact, Cb → 1 as n → ∞.)

Next, if T is any triangle in Sx, x ≤ h with all angles ≥ α, the dilation invariance
of the interpolation, IT , and of the seminorms, |u|W c,p(T ) and |u|W b,p(T ) (up to a
factor), gives

(2.3) |u− IT (u)|W c,p(T ) ≤ C(α,m)xb−c|u|W b,p(T ) ≤ C(α,m)hb−c|u|W b,p(T ),
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v

v

B

A
xx O
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A
O 1

Figure 1. Left side: Sample triangle in T . Right side: Depiction
of the set, S1.

since x = |OA| is the diameter of the triangle T . The invariance of all the terms
of equation (2.3) under isometries, then, gives the same result for all triangles with
angles ≤ α and sides ≤ h. Adding together the squares of all the estimates (2.3)
for all the triangles in T gives the desired result. �

We also obtain the following usual estimate.

Corollary 2.2. Using the assumptions and notation of Theorem 2.1, there exists
a constant C = C(α,m) such that

‖u− uI‖W c,p(P) ≤ C(α,m)hb−c‖u‖W b,p(P)

for all u ∈ W b,p(Ω).

Proof. For p < ∞, the proof follows by adding all the p powers of the estimates of
Theorem 2.1 for (c, b) replaced by (c − j, b − j), j = 0, . . . , c. For p = ∞, we take
the maximums. �

The following estimate for the interpolation error on a proper subdomain of Ω
(i.e., at a positive distance from the corners) then follows from the equivalence of the
Wm,p(Ω)-norm and the Wm,p

a (Ω)-norm on proper subsets of Ω. Recall that rΩ(x)
denotes the distance from x to the singular points of Ω, as in the introduction. If
G is an open subset of Ω, define

(2.4) Wm,p
a (G; rΩ) := {f : Ω → C, r

|α|−a
Ω ∂αf ∈ Lp(G), for all |α| ≤ m},

and let ‖u‖Wm,p
a (G) denote the corresponding norm:

(2.5) ‖u‖pWm,p
a (G)

=
∑

|α|≤m

‖r|α|−a
Ω ∂αf‖pLp(G).

(For p = ∞, we take the maximum.) Note that this definition is similar to that
of the usual weighted Sobolev spaces Wm

a (Ω) introduced in equation (0.2). In
particular, Wm,p

a (Ω) = Wm,p
a (Ω, rΩ). Also, we write Wm,p

a (G; rΩ) = Wm,p
a (G)

when convenient.

Proposition 2.3. Let p, α, and 0 ≤ c < b ≤ m + 1 be as in Theorem 2.1. Also,
let G ⊂ Ω be an open subset such that rΩ > ξ > 0 on G and let T = (Tj) be a
triangulation of Ω with angles ≥ α and sides ≤ h. Then, for any given weights
a, a′,∈ R, there exists a constant C = C(α,m, ξ, a, a′) > 0 such that

‖u− uI‖Wc,p

a′ (G) ≤ C hb−c‖u‖Wb,p
a (G), ∀u ∈ Wb,p

a (Ω).
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Proof. This follows from Theorem 2.1 and the equivalence of the W t,p and Wt,p
a

norms on Wt,p
a (G; rΩ), for any t and a. Again, this equivalence holds due to the

fact that G is bounded away from the singular points. Thus, the weights in the
Sobolev norms are bounded from above and from below. �

Then, we have the following lemma, whose proof is a direct calculation.

Lemma 2.4. There exist absolute constants Cm, m ≥ 0, such that ‖vu‖Wm,p
a (G) ≤

Cm‖v‖Wm,∞
0 (G)‖u‖Wm,p

a (G).

2.2. Graded κ-refinement. The next step is to extend the above estimates of
Proposition 2.3 to hold near the singular points. In [12], it has been shown that
this can be done by considering graded meshes and the behavior of the spaces Km

a

under appropriate dilations. Most of the triangles in a graded mesh refinement (to
be defined below) are divided into four equal triangles using the so-called uniform
refinement.

Definition 2.5. Let T be a triangle, the uniform refinement of T is to decompose
T as the union of four equal triangles using the midpoints of its sides. This is
illustrated in Figure 2 if one takes A′ and B′ to be located at the midpoints of AQ
and BQ, respectively, (i.e., κQ = 1

2 using the notation of Definition 2.6) and with
M being the midpoint of AB.

Q

BA

A′ B ′

M

κQκQ
κQ

Figure 2. One refinement of the triangle T with singular point
Q, and a given κQ. When κQ = 1

2 , we have uniform refinement.

The graded mesh refinement procedure depends on some choices of parameters.
Thus, for each singular point Q of Ω, choose a number, κQ ∈ (0, 1/2], and a set

κ(Q) = {κ(j)
Q }. A general procedure was developed in [12, 37] to give a refinement

pattern that obtains optimal approximation properties. We extend this construc-
tion by considering more complicated refinements of certain trapezoids that arise
in this construction. To this end, for each Q, in addition to κQ, choose

(2.6) κQ = κ
(1)
Q < κ

(2)
Q < . . . < κ

(jQ)
Q = 1.

The refinement is described as follows. Again, assume that the term “singular
point” refers to both geometric and artificial singular points described above. Recall
that the initial mesh resolves the boundary exactly and that no edge of the initial
mesh contains two singular points (in the sense just described).
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Definition 2.6. Let T = QAB be a triangle with a distinguished vertex Q. (In
applications, Q will be a singular point of the problem.) Then, in a κ-refinement of
T , first divide T into a smaller triangle QA′B′ with side lengths QA′ = κQQA and
QB′ = κQQB, and a trapezoid, ABB′A′ with AB parallel to A′B′ = κQAB, as
shown in the left side of Figure 3. Then, refine the trapezoid A′B′BA by dividing

the segments QA and QB with the given ratios κ
(i)
Q introduced in equation (2.6).

More precisely, on AA′, consider points A1, A2, . . . , AjQ such that QAi = κ
(i)
Q QA

(in particular, A1 = A′ and AjQ = A). Divide QB similarly and also consider the
midpoint, M , of AB. Then, divide ABB′A′ into triangles by joining the corre-
sponding points A1, A2, . . . , Aj , B1, B2, . . . , Bj , and using no point other than M .
Thus, the resulting refinement of QAB into triangles uses only the points Q, A, B,
M , and A1, A2, . . . , Aj , B1, B2, . . . , Bj .

Q Q

BA

A′ A′
A2

A3
A4

B ′ B ′

B2

B3

B4

M BA M

κQκQ
κQ κQ

Figure 3. κ-refinement of triangle with singular point Q.

An example of a κ-refinement of a triangle T = QAB is given in the right side
of Figure 3, with j = 5. Note that if we apply the κ-refinement to two adjacent

triangles that share the same distinguished point Q, then, the constants κ
(i)
Q match,

because they belong to the same singular point. This ensures that the resulting
mesh refinement is conforming (i.e. there are no hanging nodes). See Figure 4. If
further refinement is needed, the smaller triangle is refined with the same procedure
described above. The trapezoid region is refined uniformly. This allows for further
refinements to be done in a simple and recursive way.

A
B

A2

A′

Q

Figure 4. Matching κ-refinement for two triangles that share an
edge and both touch the singular point Q.
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1/8

1/4

1/2 1/2

1/4

(a) (b)

BB AA

Q Q

κQ
β

β

β

γ

γ

α

Figure 5. (a): κ-refinement of a triangle with singular point Q

using κQ ≤ 1/8 and κ
(i)
Q = 2jQ−i. (b): Similar to (a), but with one

less bisection of the trapezoid. Angles are similar to angles in figure
(a).

Two examples of κ-refinement of a triangle are given in Figure 5. Note that
a variant of the division of the bottom trapezoid is compatible with the “newest
vertex bisection” method [22].

Definition 2.7. Let T be a mesh such that every singular point of Ω is a vertex of
a triangle in T , no triangle of T contains more than one singular point from among
the singular points of Ω, and the interface and the Dirichlet part of the boundary,
∂DΩ, is a union of edges of T (so T is aligned to the interface). A mesh with this
property is called admissible. Then, define the κ-refinement of T to be the mesh
κ(T ) obtained by applying uniform refinement to all triangles of T that contain
no singular points and by applying the κ-refinement to all triangles T of T that
contain a singular point of Ω (necessarily unique among the vertices of T ). Then,
the singular point of T will play the role of a distinguished point in the κ-refinement
of T .

We then have the following simple observation.

Lemma 2.8. With a fixed admissible initial mesh T0, κ(T0) is also admissible and,
hence, we can define by induction Tn+1 = κ(Tn).

We also obtain the following proposition stating that the minimum angle of the
meshes, Tn, is bounded below from 0.

Proposition 2.9. There exists an α0 > 0 that only depends on the angles of the

initial mesh T0 and the constants κ
(j)
Q , such that the minimum angle in any triangle

in the meshes, Tn, satisfies
αmin ≥ α0.

Proof. This follows from the fact that all the triangles in the refinements, Tn, belong
to finitely many similarity classes, a fact easily proved by induction. �

The following estimate on the number of triangles of Tn and of the dimension of
the resulting finite element spaces Sn = S(Tn,Fn) is useful for the optimal error
estimates.
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Proposition 2.10. The number of triangles, #Tn, of the mesh Tn satisfies #Tn ≤
C22n, for C > 0. Consequently, the dimension of the finite-element space, Sn :=
S(Tn,F), associated to the meshes Tn, satisfies dim(Sn) ≤ C22n.

Proof. The statement about Sn follows from the corresponding statement about Tn.
To prove the statement about the number of elements of Tn, #Tn, we observe that
each triangle of Tn is divided into four equal triangles in Tn+1, unless that triangle
contains a singular point, in which case it is divided into at most a triangles, where a
is a fixed constant. Moreover, the number of triangles of Tn that contain a singular
point is b, which is a constant independent of n. Let cn be defined by c0 = #T0
and cn+1 = (a− 4)b+ 4cn. Then,

cn = 4n#T0 + (4n − 1)(a− 4)b/3 ≤ C4n.

Using, induction, this last inequality then gives

#Tn+1 ≤ ab+ 4(#Tn − b) = (a− 4)b+ 4#Tn ≤ cn+1 ≤ C4n,

which is the desired estimate. �

Since any triangle in the initial decomposition is divided into at least 4n triangles
in the n-level refinement mesh Tn, we also have 22n ≤ dim(Sn), which, together
with the inequality in Proposition 2.10 means

(2.7) dim(Sn) ∼ 22n .

Assume that for each singular point, Q, a constant, aQ ∈ (0, 1], is given. (Also,
recall that the set of singular points includes the vertices of Ω.) In applications,
the constant aQ comes from regularity estimates, but, in general, κQ ≤ 2−m/aQ ;
see for instance the discussion in Section 3. The simplest method to perform the
κ-refinement, in which each triangle is divided into four smaller triangles (i.e.,
jQ = 2 for all Q as in Figure 2), leads to smaller and smaller angles as aQ → 0.
(Incidentally, this simple refinement is related to the ones introduced in [2,9,12,41]
for the Dirichlet problem.) However, this is inconvenient in some applications and
has disadvantages. Thus, we present a version of the κ-refinement procedure that
leads to meshes with a lower bound on the minimum angle of the triangles in the
refinements, independently of m, as follows.

The uniform in m minimum angle preserving κ-refinement is achieved by choos-

ing in the definitions above κ
(i)
Q = 2jQ−i with jQ as small as possible, but satisfying

κQ := κ
(1)
Q ≤ 2−m/aQ . In particular, κ

(1)
Q = 2jQ−1 ≤ 2−m/aQ < κ

(2)
Q = 2jQ−2. We

proceed similarly with BQ.
From a practical point of view, the uniform in m minimum angle preserving

κ-refinement amounts to the side AQ being bisected until the shortest segment has
length less than or equal to 2−m/aQ |AQ|. The bottom trapezoid is refined into
three triangles, whereas the intermediate trapezoids are merely bisected into two
triangles. This is shown in the left side of Figure 5. This guarantees that the
minimum angle of any triangle is bounded from below by an angle independent of
m. We now prove that the version of the κ-refinement just introduced yields this
result, which may be useful for the hp-version of the FEM.

Theorem 2.11. Let the initial triangle ABQ be refined using the κ-refinement with

κ
(i)
Q = 2jQ−i and κ

(1)
Q = κQ ≤ 2−m/aQ < κ

(2)
Q . Then, the minimum angle αmin in
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any triangle in the meshes Tn is bounded from below,

αmin ≥ α0,

where α0 only depends on the angles of the initial mesh T0 and is independent of
m.

Proof. A simple geometric argument shows that the trapezoids constructed from
this refinement are all similar. Therefore, the smallest angle obtained is reached if
one were to bisect only one trapezoid. See the right side of Figure 5. The smallest
angle in this configuration can be determined by the lengths of the sides and the
angles of the initial triangle. Further refinement produces triangles with angles
that are similar. Therefore, since m only determines the number of trapezoids
introduced, the minimum angle is independent of this value. �

The assumption that no two singular points of Ω belong to the same triangle of
the mesh is not really needed. Any reasonable division of an initial triangulation
will achieve this condition. For instance, if two singular points of Ω belong to the
same triangle of the mesh, then the corresponding edge can be divided into equal
parts or in a ratio given by the ratio of the corresponding κ constants. In this case,
no new singular points are introduced on the sides of the initial triangle and this is
much easier to implement. In extreme cases, however, large, skinny triangles with
small angles could be introduced worsening the approximation results. In these
instances, the more general procedure should be used instead. For instance, given
a domain, D, with an initial triangulation with minimum angle α, the refinement
can now be done in a way where there is a α0 > 0 (but dependent on κ and m) such
that all the resulting meshes have the minimum angle greater than α0 as shown in
Theorem 2.11. In either case, the following definitions and approximation results
hold.

2.3. Approximation close to the singular points for function in Wm,p
a .

Again, consider a mesh, T , and a continuous, conformally invariant family, F , of
finite elements as in Subsection 1.2. We denote by IT ,F the interpolant associated
to T and F , as defined in Subsection 1.4. We denote by Tn, the meshes on Ω, and
by F , the fixed conformal invariant family of finite elements. Then, ITn,F denotes
the associated interpolating operator.

We now want to investigate the approximation properties afforded by the trian-
gulation Tn close to a singular point, Q, of Ω for functions u ∈ Wm,p

a (Ω). We again
consider the general case of 1 < p < ∞ and equations of order 2μ. Approxima-
tion results for functions in Wm,p

a are probably enough to treat problems with only
Dirichlet boundary conditions and no interfaces. When interfaces or other types
of boundary conditions are present, one most likely would need a generalization of
this framework to use augmented Sobolev spaces. An example of how this is done
for μ = 1 can be seen in the following subsection.

Denote VQ to be the union of the (closed) triangles in the initial mesh T0 that
have Q as a singular point. Denote by |x − y| the Euclidean distance from x to
y and assume that rΩ(x) = |x − Q| for x ∈ VQ. By refining the initial mesh, if
necessary, we assume the closed sets VQ are disjoint.

For any region G ⊂ VQ, denote by λG ⊂ VQ the region obtained by dilating
G with respect to Q with ratio λ < 1. The following interpolation estimates are
then similar to those in [12, 37], but deal with a higher order approximation. In
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particular, we need the following simple lemma that for p = 2 is proved by a direct
calculation in [12]. Recall the definitions of the norms ‖ ‖Wm,p

a (G) from equation
(2.5). The slightly more general lemma below is also proved by a direct calculation
(recall that d = 2 in this paper).

Lemma 2.12. Let Q be a singular point of Ω and G ⊂ VQ ⊂ Ω ⊂ Rd an open set.
Denote G′ = λG, 0 < λ < 1, and uλ(x) := u(λx), then

‖uλ‖Wm,p
a (G) = λa−d/p‖u‖Wm,p

a (G′) .

The condition λ < 1 is not necessary as long as the domains of the resulting
functions are mapped appropriately.

Lemma 2.13. Assume p > 1 and ε > 0. Then, there is a continuous embedding
Wm+μ,p

ε+d/p (Ω) → C(Ω). Moreover, for each singular point Q ∈ V and for each u ∈
Wm+μ,p

ε+d/p (Ω), the value u(Q) = 0 is well defined.

Proof. Let u ∈ V and U ⊂ Ω be an open subset at positive distance from the set of
singular points V . Then, the Sobolev embedding theorem givesWm+μ,p(U) ⊂ C(U),
since p−1 < 1 ≤ (m+μ)/d (where, we recall, d = 2 is the dimension of the domain).
Hence, u ∈ C(U). By the dilation invariance of the spaces Wm,p

a (Ωj), Lemma 2.12,
we obtain

Wm+μ,p
d/p (Ωj) ⊂ C(Ω� V) ∩ L∞(Ω).

In the case that there are no interfaces, this gives

Wm+μ,p
ε+d/p (Ω) = rεΩW

m+μ,p
d/p (Ω) ⊂ C(Ω) ,

since ε > 0. Finally, u(Q) = 0, since rεΩ(Q) = 0. �

Assumptions. For simplicity of the notation, assume from now on that the con-
stants κQ are all the same and let κ = κQ. Also assume that κ ≤ 2−m/a, for some
fixed a > 0. Recall that the approximation degree m ≥ 1 is fixed.

Now estimate the interpolation error on the triangles of the mesh Tn that are

close to a singular point. More precisely, for each singular point Q ∈ V , define V (n)
Q

to be the union of all the closures of triangles T ∈ Tn that have Q as a vertex.

Similarly, define U
(n)
Q to be the union of all the closures of triangles T ∈ Tn that

touch (i.e., intersect) V
(n)
Q . Then, choose functions η

(n)
Q ∈ C∞(Ω) that are equal to

0 on V
(n)
Q and are equal to 1 outside U

(n)
Q . These functions, η

(n)
Q , can be chosen

such that they correspond to each other with respect to dilations centered at Q, in

an obvious sense. Thus, for each n, η
(n)
Q is obtained by a dilation with ratio κn−1

from η
(1)
Q .

Lemma 2.14. Assume a > 0 and κ ≤ 2−m/a and let G ⊂ Ω be an open subset. Us-

ing the functions η
(n)
Q introduced above, there exists a constant C > 0, independent

of n but possibly dependent on a, b,m, p, and μ, such that

‖(1− η
(n)
Q )u‖Wμ,p

b+d/p
(G) ≤ C2−mn‖u‖Wm+μ,p

a+b+d/p
(G),

for any u ∈ Wm+μ,p
a+b+d/p(G, rΩ).
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Proof. Assume G = Ω, for simplicity of notation. The general case is identical. The

support of (1−η
(n)
Q )u is contained in a set on which rΩ ≤ Cκn, with C independent

of Q or n and, hence,

(2.8) ‖(1− η
(n)
Q )u‖Wμ,p

b+d/p
≤ C(κn)a‖(1− η

(n)
Q )u‖Wμ,p

a+b+d/p
≤ C2−mn‖u‖Wm+μ,p

a+b+d/p
,

where in the last inequality, Lemma 2.4 is used as well as the fact that the norms

‖1− η
(n)
Q ‖Wm,∞

0
are independent of n by the dilation invariance of the Wm,∞

0 norm

(Lemma 2.12). �

We assume from now on that we have fixed constants a and b such that a > 0
and a+ b > 0. We also assume that κ ≤ 2m/a.

To continue the study of the error estimates, notice that we may assume that

by refining the initial mesh T0, all the functions 1 − η
(n)
Q have disjoint support, so

(1 − η
(n)
Q )(1 − η

(n)
Q′ ) = 0 for Q �= Q′ ∈ V and, hence, η(n) :=

∏
Q∈V η

(n)
Q satisfies

1 = η(n) +
∑

Q(1− η
(n)
Q ). Denote then by

(2.9) ũn = η(n)u+
∑
Q∈V

u(Q)(1− η
(n)
Q ) = η(n)u ,

for u ∈ Wm+μ,p
a+b+d/p(Ω). Note that ũn is well defined since V consists of continuous

functions (Lemma 2.13) by the assumption that a+ b > 0.
Lemma 2.14 then yields the following corollary.

Corollary 2.15. Using the notation ũn of equation (2.9), we have that there exists
a constant C > 0, independent of n, such that

‖u− ũn‖Wμ,p
b+d/p

(G) ≤ C2−mn‖u‖Wm+μ,p
a+b+d/p

(G),

for any u ∈ Wm+μ,p
a+b+d/p(G), G ⊂ Ω open.

Proof. Since 1 = η(n) +
∑

Q∈V(1− η
(n)
Q ), we have

u− ũn =
∑
Q∈V

u(1− η
(n)
Q ).

The result then follows from Lemma 2.14. �

Next, we introduce the modified interpolation operator by

(2.10) uI,n = ITn,F (ũn) ∈ Sn := S(Tn,F),

with ũn defined in equation (2.9). Note that the modified interpolation operator
allows the smoothness properties of u close to the singular points to be ignored,
since ũn (unlike u) is constant close to each singular point. Thus, only smoothness
estimates on u away from the singular points are needed, where they are the same
as the classical estimates. An example is the Sobolev embedding H2 ⊂ C, valid in
two and three dimensions.

Recall that we want to approximate functions u in Wm+μ,p
a+b+d/p(Ω), a > 0, a +

b > 0 with functions in Sn. We in fact show that the interpolant uI,n is a good
approximation of u. The estimates are obtained by breaking them into regions. We
begin with the regions closest to the singularities.

Licensed to Tufts Univ. Prepared on Thu Jul 16 10:38:35 EDT 2015 for download from IP 130.64.11.153.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



GRADED MESH APPROXIMATION 2209

Lemma 2.16. Denote by κnT ⊂ T ⊂ Ωj the triangle with singular point, Q,

obtained from T ∈ T0 after n refinements. Let u ∈ Wm+μ,p
a+b+d/p(Ωj). Then,

‖u− uI,n‖Wμ,p
b+d/p

(κnT ) ≤ C2−mn‖u‖Wm+μ,p
a+b+d/p

(κnT ),

where C depends on m and κ, but not on n or T . Here, uI,n is the modified
interpolant given by equation (2.10).

Proof. Since ũn = u(Q) = 0 and η(n) = 0 on κnT , we have uI,n = ITn,F (ũn) =
u(Q) = 0 on κnT as well. Then,

‖u− uI,n‖Wμ,p
b+d/p

(κnT ) = ‖u‖Wμ,p
b+d/p

(κnT ) ≤ C2−mn‖u‖Wm+μ,p
a+b+d/p

(κnT ),

by Lemma 2.14. �

The bounds on κnT of the previous lemma are combined with bounds on sets of
the form κjT � κj+1T to obtain the following estimate on the arbitrary, but fixed,
triangle T ∈ T0 that has a vertex Q that is a singular point of Ω. Recall that λG
is obtained from G by dilating with ratio λ < 1 and center Q.

Proposition 2.17. Consider the triangles κξT ⊂ ξT ⊂ Ωj, where T is a triangle
with one vertex Q ∈ V, a singular point of Ω. Let T = (Tj) be a triangulation of

G := ξT � κξT with angles ≥ α and edges ≤ h. Let u ∈ Wm+μ,p
a+b+d/p(Ωj). Then, the

interpolant IT ,F (u) ∈ S(T ,F) satisfies

‖u− IT ,F (u)‖Wμ,p
b+d/p

(G;rΩ) ≤ C(a, κ, α,m)ξa(h/ξ)m‖u‖Wm+μ,p
a+b+d/p

(G;rΩ) ,

with C(a, κ, α,m) independent of ξ, h, and u.

Proof. Let �̃ be the distance from Q to the opposite side of T . Assume that Q
is the origin, to simplify the notation, and recall the dilation function uλ, where
uλ(x) = u(λx), x ∈ R2. Also, recall that the dilation commutes with interpolation
by the assumption that the family of finite elements, F , is conformally invariant.
Using Lemma 2.12 with λ = ξ, Proposition 2.3 is applied to the region G′ =
T � κT = λ−1G ⊂ Ω. Denoting by M = C(α,m, κ�̃ξ, a + b + d/p, b + d/p) the
constant of Proposition 2.3, we obtain

‖u− IT ,F (u)‖Wμ,p
b+d/p

(G) = λ−b‖uλ − IT ,F (u)λ‖Wμ,p
b+d/p

(G′)

= λ−b‖uλ − IT ,F (uλ)‖Wμ,p
b+d/p

(G′) ≤ Mλ−b(h/λ)m‖uλ‖Wm+μ,p
a+b+d/p

(G′)

= Mλ−bλa+b(h/λ)m‖u‖Wm+μ,p
a+b+d/p

(G) = Mξa(h/ξ)m‖u‖Wm+μ,p
a+b+d/p

(G).

This completes the proof. �

Next, denote uI,n to be the modified interpolant of equation (2.10).

Proposition 2.18. Let T ∈ T0 have the singular point Q as a vertex. Then, there
exists a constant C > 0, such that

‖u− uI,n‖W1,p
b+1(T ) ≤ C2−mn‖u‖Wm+μ,p

a+b+d/p
(Ω) ,

for all n and all u ∈ Wm+μ,p
a+b+d/p(Ω).
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Proof. Fix n. The proof of the proposition follows from the estimates on the subsets
κj−1T �κjT , 1 ≤ j ≤ n, (Proposition 2.17) and from the estimate on κnT (Lemma
2.16). Let ũn be as defined in equation (2.9). Recall that we write Wm,p

a (G; rΩ) =
Wm,p

a (G) when convenient. In view of Corollary 2.15, it is enough to show that

‖ũn − uI,n‖Wμ,p
b+d/p

(T ) ≤ C2−mn‖u‖Wm+μ,p
a+b+d/p

(T ) ,

with C a possibly different constant. Then, write

‖ũn − uI,n‖pWμ,p
b+d/p

(T )
= ‖ũn − uI,n‖pWμ,p

b+d/p
(κnT )

+

n∑
j=1

‖ũn − uI,n‖pWμ,p
b+d/p

(κj−1T�κj)
.

Recall that uI,n = ITn,F (ũn) ∈ Sn := S(Tn,F) and that ũn = 0 on κnT . The
first term ‖ũn−uI,n‖pWμ,p

b+d/p
(κnT )

is, thus, zero. Definition 2.7 shows that the mesh

size h of the restriction of the mesh Tn to κj−1T � κjT , is ≤ Cκj−12j−1−n, for
a constant C that depends only on T0. Let G = κj−1T � κjT . Then, using the
notation in Proposition 2.17, we have that ξ = κj−1 and, therefore,

(2.11) ‖ũn − uI,n‖Wμ,p
b+d/p

(G) ≤ C1κ
(j−1)a(κj−12j−1−n/κj−1)m‖ũn‖Wm+μ,p

a+b+d/p
(G)

≤ C22
−(j−1)m2−nm+(j−1)m‖ũn‖Wm+μ,p

a+b+d/p
(G) = C22

−nm‖ũn‖Wm+μ,p
a+b+d/p

(G)

≤ C32
−nm‖ũn‖Wm+μ,p

a+b+d/p
(G),

where C1, C2, and C3 depend on κ, but not on u, n, or j. The last inequality is
from Lemma 2.14. For p < ∞, we complete the proof by adding up all the above
error estimates on the subsets G := κj−1T �κjT , 1 ≤ j ≤ n. For p = ∞, we simply
take the maximum. �

We then have the following main approximation result.

Theorem 2.19. Assume u ∈ Wm+μ,p
a+b+d/p(Ω), a > 0, a+ b > 0, and κ ≤ 2−m/a. Let

Tn be the n-th refinement of an initial triangulation, T0. Let Sn := Sn(Tn,F) be
the associated finite-element space given in equation (1.8) and let uI,n ∈ Sn be the
modified interpolant associated to Tn and F , equation (2.10). Then, there exists
C > 0, independent of n or u, such that

‖u− uI,n‖Wμ,p
b+d/p

(Ω) ≤ C2−mn‖u‖Wm+μ,p
a+b+d/p

(Ω) .

Proof. Consider now the set W = Ω �
(⋃

Q∈V
⋃

Q∈T∈T0
T
)
, that is, the set G is

obtained by removing from Ω all the triangles of the initial mesh T0 that have a
vertex among the singular points of the problem. (We write by abuse of notation,
Q ∈ T , when we really mean that the vertex Q of T is in the closure of T .)

Assume first that p < ∞. The proof is an immediate consequence of the estimates
in Propositions 2.24 and 2.3 applied, respectively, to the triangles T ∈ T0 that have
singular points as vertices and to the region W that is the complement of these
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triangles in Ω (as defined above). We then have

‖u− uI,n‖pWμ,p
b+d/p

(Ω)
=

∑
Q∈V

∑
Q∈T

‖u− uI,n‖pWμ,p
b+d/p

(T )
+ ‖u− uI,n‖pWμ,p

b+d/p
(W )

≤ C2−mnp
( ∑
Q∈V

∑
Q∈T

‖u‖pWm+μ,p
a+b+d/p

(T )
+ ‖u‖pWm+μ,p

a+b+d/p
(W )

)

≤ C2−mnp‖u‖pWm+μ,p
a+b+d/p

(Ω)
.

For p = ∞, we take the maximum. The proof is now complete. �

2.4. Extension to some transmission problems. Let us again assume that
p = 2 and μ = 1, but now allow for transmission problems and mixed boundary
conditions. In this case, we need to use augmented broken Sobolev spaces as in
[37] and recall the definition of these spaces. Let χQ be a smooth function that
is equal to 1 near each singular point Q ∈ V . We assume that the functions, χQ,
have disjoint supports and, in case Q is an interior point of the domain, then χQ

vanishes close to the boundary of Ω. If χQ is supported near a vertex of Ω, then
we assume that it satisfies the Neumann boundary conditions on each adjacent
side. If the diffusion matrix, A, is scalar, then we can take χQ to be a function
of the distance function to the point Q. Denote by U ⊂ V , the subset of the
set V of singular points of the problem that are either a vertex whose adjacent
sides have Neumann conditions (a so-called “Neumann-Neumann vertex”), or a
nonsmooth interface point interior to Ω, or a point where the interface touches
the interior of ∂NΩ. Thus, U includes the points that belong to more than two
of the subdomains, Ωj (the so-called multiple junction points), which are typically
interior points of Ω. We also have that U is the set of points Q ∈ V such that
χQ satisfies the boundary conditions of the problem. Then, we define Us to be
the linear span of the functions χQ, and, hence, all the functions in Us satisfy the
boundary conditions of the problem. We also need to introduce the broken Sobolev

spaces K̂m
a (Ω), defined in terms of the decomposition Ω =

⋃K
j=1 Ωj ,

(2.12) K̂m
a (Ω) := {u : Ω → R, u|Ωj

∈ Km
a (Ωj), j = 1, . . . ,K }.

We then let the approximation space be the following augmented broken Sobolev
space:

(2.13) V :=
(
K̂m+1

a+b+1(Ω) ∩ K1
a+b+1(Ω)

)
+ Us,

for the fixed approximation parameter m ≥ 1 and some fixed parameters a >
0, a + b > 0 as in the previous section. This choice of approximation space is
suggested by the regularity results of [37], which state that the solution, u, of the
transmission/boundary value problem (0.1) is such that u ∈ V for b = 0 (see [36] for
some related results). The additional parameter b satisfying a+ b > 0 is introduced
with some applications to the least squares finite-element method in mind [34].
Notice that for each triangle T ∈ Tn, we have T ⊂ Ωj , for some j, since the initial

mesh T0 is aligned with the interface and, hence, u ∈ Km+1
a+b+1(T ). Thus, we work

with the broken weighted Sobolev spaces in the same way we would work with
the usual weighted Sobolev spaces. Notice that the notation in the approximation
results is not optimized (it would have been maybe easier to use b = 0), however, the
form of this notation is the one that will be used in some of the later applications.
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The norm on V is given by the direct sum norm for any choice of a norm ‖ ‖Us

on the finite-dimensional space Us:

(2.14) ‖u0 + ws‖V = ‖u0‖K1
a+b+1(Ω) +

K∑
j=1

‖u0‖Km+1
a+b+1(Ωj)

+ ‖ws‖Us
,

where u0 ∈ K̂m+1
a+b+1(Ω) ∩ K1

a+b+1(Ω) and where ws is always an element in Us.
Then, we have the following lemma (which remains valid in three dimensions). For
definiteness, we choose ‖

∑
Q aQχQ‖Us

=
∑

Q |aQ|. Also, notice that K1
a+b+1(Ω) ∩

K̂m+1
a+b+1(Ω) is a closed subspace of K̂m+1

a+b+1(Ω) for m ≥ 1, and, hence, the term
‖u0‖K1

a+b+1(Ω) is not really necessary in the definition of the V -norm. Another

good choice of a norm on Us is the restriction of any Sobolev norm Hk on Ω to Us.
We want to extend Theorem 2.19 to u ∈ V . Our reasoning parallels the one in

the previous section.
The following lemma relies essentially on the additional condition that u0 ∈

K1
a+b+1(Ω), which enforces the continuity across the interface(s).

Lemma 2.20. There is a continuous embedding V → C(Ω). In particular, for
each singular point Q ∈ V and for each u ∈ V , the value u(Q) is well defined and
depends continuously on u.

Proof. Let u = u0 + ws ∈ V . We have ws ∈ Us ⊂ C(Ω), so we assume u = u0 ∈
K̂m+1

a+b+1(Ω). The same argument as in the proof of Lemma 2.13 then gives that

u ∈ C(Ωj). The continuity across the interfaces, and hence the global continuity
follows from u ∈ K1

a+b+1(Ω). �

It follows that any u ∈ V :=
(
K̂m+1

a+b+1(Ω) ∩ K1
a+b+1(Ω)

)
+ Us can be written as

(2.15)

u = u0 + ws, where ws :=
∑
Q∈U

u(Q)χQ ∈ Us and

u0 ∈ K̂m+1
a+b+1(Ω) ∩ K1

a+b+1(Ω) ,

and we call this decomposition the canonical decomposition of u ∈ V .

Recall the functions η
(n)
Q and η(n) :=

∏
Q∈V η

(n)
Q introduced in the previous

subsection before equation (2.9). Denote then by

(2.16) ũn = η(n)u+
∑
Q∈V

u(Q)(1− η
(n)
Q ) = η(n)u+

∑
Q∈U

u(Q)(1− η
(n)
Q ),

for u ∈ V . Note that ũn is well defined since V consists of continuous functions
(Lemma 2.20). Of course, when there are no interfaces and no mixed boundary
conditions, we have that U is empty, and hence ũn = η(n)u.

Lemma 2.14 then yields the following corollaries.

Corollary 2.21. Using the notation ũn of equation (2.16), there exists a constant
C > 0, independent of n, such that

‖u− ũn‖K1
b+1(Ω) ≤ C2−mn‖u‖V ,

for any u ∈ V . (So u has the canonical decomposition u = u0 + ws, ws ∈ Us and

u0 ∈ K̂m+1
a+b+1(Ω) ∩ K1

a+b+1(Ω).)
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Proof. The proof is obtained by estimating the error term ‖u−ũn‖K1
b+1(Ω) separately

on each region Ωj , so that K = 1 may be assumed (that is, that there are no

interfaces). Then u = u0 +
∑

Q u(Q)χQ, with u0 ∈ Km+1
a+b+1(Ω) = K̂m+1

a+b+1(Ω), by

the definition of the approximation space V . Since 1 = η(n) +
∑

Q(1 − η
(n)
Q ), we

have

(2.17) u− ũn =
∑
Q∈U

(u− u(Q))(1− η
(n)
Q ).

Since (1 − χQ)(1 − η
(n)
Q ) is a smooth function on Ω that is zero near the set V of

singular points, we have (1− χQ)(1− η
(n)
Q ) ∈ Km+1

a+b+1(Ω) for all m, a, and b.

By decreasing supports of the functions η
(n)
Q , if necessary, assume that χQ′(1−

η
(n)
Q ) = 0 for Q �= Q′ and that (1 − χQ)(1 − η

(n)
Q ) = 0. Write u ∈ V as u =

u0 +
∑

Q∈U u(Q)χQ, with u0 ∈ Km+1
a+b+1(Ω). Equation (2.17) then gives

(2.18) u− ũn =
∑
Q∈U

u0(1− η
(n)
Q ).

The result then follows from Lemma 2.14. �

We also mention the following corollary of the above proof.

Corollary 2.22. Using the notation of Corollary 2.21, if u ∈ Us, then u = ũn.

Proof. Indeed, under the assumptions of this corollary, u0 = 0 and, hence, the
result is given by equation (2.18). �

Next, we show that we may assume u ∈ Km+1
a+b+1(Ω) (that is, we may take ws = 0).

Let T ∈ T0 be a triangle that has a vertex that is a singular point Q of Ω. Let
κnT ∈ Tn be the triangle obtained by dilating T with ratio κn = κn

Q and center Q,
that is, the triangle that is similar to T with ratio κn, has Q as a vertex, and has all
sides parallel to the sides of T . Then, κnT ⊂ κn−1T for n ≥ 1 and κnT ∈ Tn. We
assume that for all triangles T ∈ T0 with singular vertex Q ∈ V , we have χQ = 1
on κT , for all Q.

Lemma 2.23. Let w =
∑

Q aQχQ ∈ Us. Then,

‖w − wI,n‖K1
b+1(Ω) ≤ C2−mn

∑
Q

|aQ| =: C2−mn‖w‖Us
=: C2−mn‖w‖V ,

for a constant C that is independent of w and n.

Proof. Let U = Ω �
⋃
κT , where the union is over all triangles T ∈ T0 that have

a vertex in the set V of singular points of the problem. Then, w = wI,n outside
U , by Corollary 2.22. The result is then a consequence of Proposition 2.3 and of
the fact that h ≤ C2−n for the mesh Tn, with C a constant depending only on the
initial mesh T0. �

We want to extend the above lemma to u ∈ V . By linearity, we assume that
u ∈ Km+1

a+b+1(Ω), using the above lemma.
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Proposition 2.24. Let T ∈ T0 have the singular point Q as a vertex. Then, there
exists a constant C > 0, such that

‖u− uI,n‖K1
b+1(T ) ≤ C2−mn‖u‖V = C2−mn

(
‖u0‖Km+1

a+b+1(T ) + ‖ws‖Us

)
,

for all n and all u ∈ V with canonical decomposition u = u0 + ws.

Proof. We assume that ws = 0, by Lemma 2.23. The result then follows from the
analogous Proposition 2.18. �

Now we state one of the main results that is used in the application to the
numerical approximation of the solution, u, of problem (0.1).

Theorem 2.25. Assume u = u0 + ws ∈ V , where u0|Ωj
∈ Km+1

a+b+1(Ωj) for all j,

u0 ∈ K1
a+b+1(Ω), and ws =

∑
Q∈U aQχQ ∈ Us. Assume a > 0, a + b > 0, and

κ ≤ 2−m/a. Let Tn be the n-th refinement of an initial triangulation, T0, aligned
with the interface. Let Sn := Sn(Tn,F) be the associated finite-element space given
in equation (1.8) and let uI,n ∈ Sn be the modified interpolant associated to Tn and
F , equation (2.10). Then, there exists C > 0, independent of n or u, such that

‖u− uI,n‖K1
b+1(Ω) ≤ C2−mn

( ∑
j

‖u0‖Km+1
a+b+1(Ωj)

+
∑
Q

|aQ|
)
=: C2−mn‖u‖V .

Note that while u ∈ V := K̂m+1
a+b+1(Ω) ∩ K1

a+b+1(Ω) + Us, the difference u− uI,n

satisfies u− uI,n ∈ K̂m+1
a+b+1(Ω) ∩ K1

a+b+1(Ω).

Proof. Again, we may assume that ws = 0, by Lemma 2.23. The proof is then
an immediate consequence of the estimates in Propositions 2.3 and 2.24 applied,
respectively, to the triangles T ∈ T0 that have singular points as vertices and to the
region U that is the complement of these triangles in Ω (as defined in the proof of
Lemma 2.23 above), as follows:

‖u− uI,n‖2K1
b+1(Ω) =

∑
Q∈V

∑
Q∈T

‖u− uI,n‖2K1
b+1(T ) + ‖u− uI,n‖2K1

b+1(U)

≤ C2−mn
( ∑
Q∈V

∑
Q∈T

‖u‖2Km+1
a+b+1(T )

+

K∑
j=1

‖u‖2Km+1
a+b+1(U∩Ωj)

)
≤ C2−mn‖u‖V .

The proof is now complete. �

3. Applications to the finite-element method

In this section, we apply the results of the previous sections to obtain quasi-
optimal convergence rates for the finite-element solution of a transmission/interface
problem, such as (0.1), using the meshes Tn.

Recall that Ω =
⋃K

j=1 Ωj , where Ωj are disjoint polygonal domains. Let Γ :=

∂Ω �
⋃K

j=1 ∂Ωk denote the interface. Assume the coefficients A = [aij ] have only
jump discontinuities across the interface Γ. We are interested in approximating the
solution of the boundary value/interface problem, (0.1), stated in the Introduction.
Note that this problem is really formulated in a weak sense, which implies the usual
matching and jump conditions at the interface,

(3.1) u+ = u−, DA
ν+u = DA

ν−u,
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where we have labeled the nontangential limits u+, u− of u at each side of the inter-
face, and denote the respective conormal derivatives, DA

ν+ and DA
ν−, by DA

ν±u :=∑
i,j νiA

i,j∂ju± = ν · A · ∇u±, where ν is a choice of unit normal vector to the

interface Γ. We shall also assume that − div(A∇) is uniformly strongly elliptic, in
the usual sense, that is, we assume that there exists C > 0 such that

(3.2)
2∑

i,j=1

Ai,j(x)ξiξj ≥ C(ξ21 + ξ22),

for all x ∈ Ω and ξ ∈ R2. Then, one of the main results of [37] states that the
solution, u, of the boundary value/interface problem (0.1) is such that u ∈ V , where
V is the approximation spaces introduced in equation (2.13) with b = 0. Recall the

norm ‖ ‖V on the spaces V := K̂m+1
a+1 (Ω) ∩ K1

a+1(Ω) + Us introduced in equation
(2.14). Then, we have the following result.

Theorem 3.1. Assume ∂DΩ �= ∅ and that Ω is connected, then there exists η > 0
with the following property. Assume 0 < a < η, m ∈ Z+, and f ∈ K̂m−1

a−1 (Ω), then

there exists a unique solution u = u0 + ws, u0 ∈ K̂m+1
a+1 (Ω) ∩ K1

a+1(Ω), ws ∈ Us,
of equation (0.1) (the transmission problem). Moreover, there is a constant C > 0
such that

‖u‖V := ‖u0‖K1
a+1(Ω) +

K∑
j=1

‖u0‖Km+1
a+1 (Ωj)

+ ‖ws‖Us
≤ C

K∑
j=1

‖f‖Km−1
a−1 (Ωj)

,

The constant C depends on Ω, m, a, and Aij, but not on f .

In the case of the pure Neumann problem we have to take into account the
nonuniqueness of the solution. Once we do that, a similar statement holds true.

The bilinear form associated to the problem (0.1) is B(u, v) =
∫
Ω
(∇u)·A·(∇v)dx,

as usual. Then, un ∈ Sn = S(Tn,Fn) denotes the Galerkin approximation of the
solution u of problem (0.1), namely, it is the unique un ∈ Sn satisfying

(3.3) B(un, vn) = (f, vn), ∀ vn ∈ Sn.

We have the following theorem,

Theorem 3.2. Let m ≥ 1, assume the Dirichlet part of the boundary is not empty,
and let u be the corresponding solution to problem (0.1) with f ∈ Km−1

a−1 (Ωj) for all
j, where 0 < a < η, with η as in Theorem 3.1. Let Tn be the n-th κ-refinement of an
initial triangulation T0 as in Definition 2.7, let Sn := Sn(Tn,m) be the associated
finite-element space given in equation (1.8) and let un = uSn

∈ Sn be the finite-
element solution defined in (3.3). We assume κ ≤ max{2−m/a, 1/2}. Then, there
exists C > 0, independent of f or n, such that

‖u− un‖H1(Ω) ≤ C2−mn
K∑
j=1

‖f‖Km−1
a−1 (Ωj)

.

Proof. Notice first that since a > 0, we have that V ⊂ H1(Ω) continuously, that is,
there exists C > 0 such that ‖v‖H1(Ω) ≤ C‖v‖V , for all v ∈ V . Also, Céa’s Lemma
gives that there exists C1 > 0 such that ‖u−un‖H1(Ω) ≤ C1‖u− ũI,n‖H1(Ω), where
uI,n ∈ Sn = S(Tn,F) is the modified interpolant associated to Tn and F , equation
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2216 J. H. ADLER AND V. NISTOR

(2.10). Since u ∈ V , by Theorem 3.1 (quoted from [37]), an application of Theorem
2.25 and of Céa’s Lemma give:

‖u− un‖H1(Ω) ≤ C‖u− uI,n‖H1(Ω) ≤ C‖u− uI,n‖V

≤ C2−mn‖u‖V ≤ C2−mn
K∑
j=1

‖f‖Km−1
a−1 (Ωj)

.

The proof is now complete. �

A more convenient way of formulating the above theorem may be the following.

Theorem 3.3. Under the notation and assumptions of Theorem 3.2, un ∈ Sn

satisfies

‖u− un‖H1(Ω) ≤ C dim(Sn)
−m/d

∑
j

‖f‖Km−1
a−1 (Ωj)

,

for a constant C > 0 independent of f and n (d = 2, the dimension of Ω).

Proof. Again, let Tn be the triangulation of Ω after n refinements. Then, the num-
ber of triangles is O(4n) given the refinement procedure of Definition 2.6. Therefore,
dim(Sn) ∼ 4n by Proposition 2.10, so that Theorem 2.25 gives

‖u− un‖H1(Ω) ≤ C2−nm
∑
j

‖f‖Km−1
a−1 (Ωj)

≤ C dim(Sn)
−m/2

∑
j

‖f‖Km−1
a−1 (Ωj)

.

This completes the proof. �

Using that Hm−1(Ω) ⊂ Km−1
a−1 (Ω) if a ≤ 1, we obtain the following corollary.

Corollary 3.4. Under the hypotheses of Theorem 3.3,

‖u− un‖H1(Ω) ≤ C dim(Sn)
−m/2‖f‖Hm−1(Ω),

for a constant C > 0 independent of f ∈ Hm−1(Ω) and n.

Note that we do not claim that u ∈ K1
1(Ω) (which is in general not true).

Finally, using a weighted Sobolev space duality argument, we are able to get an
estimate of the error in the L2(Ω) norm.

Theorem 3.5. Under the notation and assumptions of Theorem 2.25, un ∈ Sn

satisfies

‖u− un‖L2(Ω) ≤ C dim(Sn)
−(m+1)/2‖f‖Hm−1(Ω),

for a constant C > 0 independent of f and n.

Proof. Consider the error equation for the bilinear form in (3.3),

B(φ, v) = (u− un, v), ∀ v ∈ V.

Setting v = u− un yields,

‖u− un‖2L2(Ω) = (u− un, u− un) = B(φ, u− un).

Due to the orthogonality of the error in Sn, we know B(u− un, vn) = 0 ∀vn ∈ Sn.
Thus,

‖u− un‖2L2(Ω) = B(φ− φI,n, u− un).

Using the Cauchy-Schwarz inequality gives,

‖u− un‖2L2(Ω) ≤ ‖u− un‖H1(Ω)‖φ− φI,n‖H1(Ω).
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Setting m = 1 and using the results from Theorem 2.25 (again setting b = 0) with
the error equation yields,

‖φ− φI,n‖H1(Ω) ≤ dim(Sn)
−1/2‖u− un‖L2(Ω).

Therefore, the proof is concluded by using Corollary 3.4 and some simplifications,

‖u− un‖2L2(Ω) ≤
(
C dim(Sn)

−m/2‖f‖Hm−1(Ω)

)(
dim(Sn)

−1/2‖u− un‖L2(Ω)

)

⇒ ‖u− un‖L2(Ω) ≤ C dim(Sn)
(−m−1)/2‖f‖Hm−1(Ω).

The proof is now complete. �

In addition to this, one can improve the regularity estimate of Theorem 3.3 as
follows. Choose for each singular point, Q, a small neighborhood, ΩQ. Assume
that the sets, ΩQ, are disjoint. Then, choose 0 < aQ < ηQ such that u|ΩQ

∈
Km+1

aQ+1(ΩQ) + Us if f ∈ Km−1
aQ−1(ΩQ) for all Q and take 0 < κQ < 2−m/aQ . For

example, if for the Laplacian, Δ, and the same type of boundary conditions (both
Dirichlet or both Neumann) on both sides of Q, take aQ < π/αQ, where αQ is
the angle at Q. On the other hand, if at Q there are different types of boundary
conditions, then take aQ < π/(2αQ). This allows the grading parameter to be
controlled better and may lead to better meshes in practice. For instance, this
restricts the need of “grading” to a few singular points.

3.1. Textbook hm-estimates. Finally, one can obtain “textbook” hm-error esti-
mates as follows. Assume the function ρ is such that 0 ≤ ρ ≤ 1 and that ρ(x) is the
distance to the singular point Q closest to x. Then, there exists an ε > 0 such that,
for any x such that ρ(x) < ε, there will be a unique singular point Q closest to x.
Consider a mesh T on Ω. For any triangle, T , in the given mesh, denote by dT the
diameter of the triangle and by ρT = infx∈T ρ(x), which is essentially the distance
from T to the closest singular point of T . Let a > 0 be the constant arising in the
regularity estimate of Theorem 3.2.

Then, assume that the mesh, T , has the property that there exist constants
C0 > 0 and α > 0 such that

• Any triangle T in the mesh that does not contain a singular point of Ω has
angles ≥ α and

dT ≤ C0hρ
1−a/m
T .

• For any triangle T in the mesh that does contain a singular point of Ω, we
have

dT ≤ C0h
m/a.

Denote by uT ∈ S(T ,F) the finite-element solution associated to T and F , then,

‖u− uT ‖H1(Ω) ≤ C1h
m

∑
j

‖f‖Km−1
a−1 (Ωj)

,

with a constant C1 that depends only on C0 and α. Provided that one constructs a
mesh with “few” triangles, then the above estimate can be used to recover Theorem
3.3 by using estimates analogous to equations (2.11) and (2.8). See also [19], where
similar conditions were provided.
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Conclusion

We have shown that by using a sequence of graded meshes, optimal approxi-
mation results are obtained for functions in suitable Lp-based weighted Sobolev
spaces. In this way, for p = 2, optimal approximation results are regained for the
solution of mixed boundary value/transmission problems of type (0.1), whose solu-
tions contain singularities. General conformally invariant families of finite elements
with high order are considered in the context of these graded meshes and weighted
spaces. Also, the approximation is in higher order weighted Sobolev spaces (not
just of order one). Thus, for problems that require higher regularity or smoothness
of the finite-element spaces, such as for problems of high order or those requiring
higher order p-refinement, optimal results are still obtained. Future work involves
extending these results to the least-squares finite-element method applied to prob-
lems with corner singularities [21, 26, 34, 35]. In these applications, the addition of
the graded meshes can be used to show that the least-squares functional does in
fact predict the optimal rate of convergence of the finite-element method. Another
natural problem is to study the Multigrid method for the resulting spaces. See [16]
for results in this direction.
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