
Accepted Manuscript

New stabilized discretizations for poroelasticity and the Stokes’ equations

C. Rodrigo, X. Hu, P. Ohm, J.H. Adler, F.J. Gaspar, L.T. Zikatanov

PII: S0045-7825(18)30334-7
DOI: https://doi.org/10.1016/j.cma.2018.07.003
Reference: CMA 11975

To appear in: Comput. Methods Appl. Mech. Engrg.

Received date : 15 June 2017
Revised date : 14 May 2018
Accepted date : 2 July 2018

Please cite this article as: C. Rodrigo, X. Hu, P. Ohm, J.H. Adler, F.J. Gaspar, L.T. Zikatanov, New
stabilized discretizations for poroelasticity and the Stokes’ equations, Comput. Methods Appl.
Mech. Engrg. (2018), https://doi.org/10.1016/j.cma.2018.07.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cma.2018.07.003


New stabilized discretizations for poroelasticity and the Stokes’ equations

C. Rodrigoa,∗, X. Hub, P. Ohmb, J. H. Adlerb, F.J. Gasparc, L.T. Zikatanovd,e
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Abstract

In this work, we consider the popular P1-RT0-P0 discretization of the three-field formulation of
Biot’s consolidation problem. Since this finite-element formulation is not uniformly stable with
respect to the physical parameters, several issues arise in numerical simulations. For example, when
the permeability is small with respect to the mesh size, volumetric locking may occur. To alleviate
such problems, we consider a well-known stabilization technique with face bubble functions. We
then design a perturbation of the bilinear form, which allows for local elimination of the bubble
functions. We further prove that such perturbation is consistent and the resulting scheme has
optimal approximation properties for both Biot’s model as well as the Stokes’ equations. For the
former, the number of degrees of freedom is the same as for the classical P1-RT0-P0 discretization
and for the latter (Stokes’ equations) the number of degrees of freedom is the same as for a P1-P0
discretization. We present numerical tests confirming the theoretical results for the poroelastic and
the Stokes’ test problems.

Keywords: Stable finite elements, poroelasticity, Stokes’ equations

1. Introduction

The interaction between the deformation and fluid flow in a fluid-saturated porous medium is
the object of study in poroelasticity theory. Such coupling has been modelled in the early one-
dimensional work of Terzaghi [1]. A more general three-dimensional mathematical formulation
was then established by Maurice Biot in several pioneering publications (see [2] and [3]). Biot’s
models are widely used nowadays in the modeling of many applications in different fields, ranging
from geomechanics and petroleum engineering, to biomechanics. The existence and uniqueness
of the solution for these problems have been investigated by Showalter in [4] and by Zenisek in
[5]. Regarding the numerical simulation of the poroelasticity equations, there have been numer-
ous contributions using finite-difference schemes [6, 7] and finite-volume methods (see [8, 9] for
recent developments). Finite-element methods, which are the subject of this work, have also been
considered (see for example the monograph by Lewis and Schrefler [10] and the references therein).

Stable finite-element schemes are constructed by either choosing discrete spaces satisfying ap-
propriate inf-sup (or LBB) conditions, or applying suitable stabilization techniques to unstable
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finite-element pairs. For two-field (displacement-pressure) formulations of Biot’s problem, the clas-
sical Taylor-Hood elements belongs to the first class [11, 12, 13], as well as the MINI element
[14]. On the other hand, a stabilized discretization based on linear finite elements for both dis-
placements and pressure was recently analyzed in [14], and belongs to the second type. Regarding
three-field formulations, which include the Darcy velocity as an unknown, several conforming and
non-conforming discretizations involving Stokes-stable finite-element spaces were proposed in re-
cent years. For instance, a stable finite-element method based on non-conforming Crouzeix-Raviart
finite elements for the displacements, lowest order Raviart-Thomas-Nédélec elements for the Darcy
velocity, and piecewise constants for the pressure was proposed in [15]. In [16], a family of parameter-
robust three-field finite-element schemes were proposed and analyzed and a general theory for the
error analysis was introduced. Additionally, a novel three-field formulation based on displacement,
pressure, and total pressure was proposed in [17] with error estimates independent of the Lamé
constants, yielding a locking-free approach. Furthermore, in [18], one finds a parameter-robust
error analysis and optimal preconditioning techniques for several discretizations of three-field for-
mulations for Biot’s model. For a four-field formulation of the problem, which includes the stress
tensor, the fluid flux, the solid displacement, and the pore pressure as unknowns, a stable approach
is proposed in [19]. In that work, two sets of mixed finite elements, one for linear elasticity and
one for mixed Poisson, are coupled for the spatial discretization. Finally, stable iterative schemes,
such as the fixed stress method, have also been developed and analyzed for formulations of Biot’s
model (e.g., [20, 21]).

This paper focuses on the three-field formulation, which has received a lot of attention from
the point of view of novel discretizations [22, 23, 24], as well as for the design of efficient solvers
[25, 26, 27]. Because of its application to existing reservoir engineering simulators, one of the most
frequently considered schemes is a three-field formulation based on piecewise linear elements for
displacements, Raviart-Thomas-Nédélec elements for the fluid flux, and piecewise constants for the
pressure. This element, however, does not satisfy an inf-sup condition uniformly with respect to
the physical parameters of the problem. Thus, we propose a stabilization of this popular element
which gives rise to uniform error bounds, keeping the same number of degrees of freedom as in the
original method.

A consequence of our analysis is that a new stable scheme for the Stokes’ equations is derived.
The resulting method can be seen as a perturbation of the well-known unstable pair based on
piecewise linear and piecewise constant elements for velocities and pressure, respectively (P1-P0).
However, this perturbation yields a stable finite-element pair for Stokes, which has the lowest
possible number of degrees of freedom.

The rest of the paper is organized as follows. Section 2 is devoted to describing Biot’s prob-
lem and, in particular, the considered three-field formulation and its discretization. A numerical
example is given, illustrating the difficulties that appear when using the standard, unstabilized,
approach. In Section 3, we introduce the stabilized scheme in which we consider the enrichment
of the piecewise linear continuous finite-element space with edge/face (2D/3D) bubble functions.
Section 4 is devoted to the local elimination of the bubbles to maintain the same number of degrees
of freedom as in the original scheme. The well-posedness of the resulting scheme, as well as the
corresponding error analysis are also provided here. In Section 5, we present the Stokes-stable
finite-element method based on P1-P0 finite elements obtained by following the same strategy as
presented in the previous sections for poroelasticity. Finally, in Section 6, we confirm the uni-
form convergence properties of the stabilized schemes for both poroelasticity and Stokes’ equations
through some numerical tests.
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2. Preliminaries: model problem and notation

We consider the quasi-static Biot’s model for consolidation in a linearly elastic, homogeneous,
and isotropic porous medium saturated by an incompressible Newtonian fluid. According to Biot’s
theory [2], the mathematical model of the consolidation process is described by the following system
of partial differential equations (PDEs) in a domain Ω ⊂ Rd, d = 2, 3 with sufficiently smooth
boundary Γ = ∂Ω:

equilibrium equation: −divσ′ + α∇ p = ρg, in Ω, (1)

constitutive equation: σ′ = 2µε(u) + λ div(u)I, in Ω, (2)

compatibility condition: ε(u) =
1

2
(∇u+∇ut), in Ω, (3)

Darcy’s law: w = − 1

µf
K(∇p− ρfg), in Ω, (4)

continuity equation:
∂

∂t

(
1

M
p+ α divu

)
+ divw = f, in Ω, (5)

where λ and µ are the Lamé coefficients, M is the Biot modulus, and α = 1− Kb

Ks
is the Biot-Willis

constant. Here, Kb and Ks denote the drained and the solid phase bulk moduli. As is customary,
K stands for the absolute permeability tensor, µf is the viscosity of the fluid, and I is the identity
tensor. The unknown functions are the displacement vector u and the pore pressure p. The effective
stress tensor and the strain tensor are denoted by σ′ and ε, respectively. The percolation velocity
of the fluid, or Darcy’s velocity, relative to the soil is denoted by w and the vector-valued function
g represents the gravitational force. The bulk density is ρ = φρf + (1− φ)ρs, where ρs and ρf are
the densities of solid and fluid phases and φ is the porosity. Finally, the source term f represents
a forced fluid extraction or injection process.

Our focus here is on the so-called three-field formulation in which Darcy’s velocity, w, is also a
primary unknown in addition to u and p. As a result, we have the following system of PDEs:

−divσ′ + α∇p = ρg, where σ′ = 2µε(u) + λ div(u)I, (6)

K−1µfw +∇p = ρfg, (7)

∂

∂t

(
1

M
p+ α divu

)
+ divw = f. (8)

This system is often subject to the following set of boundary conditions:

p = 0, for x ∈ Γt, σ′n = 0, for x ∈ Γt, (9)

u = 0, for x ∈ Γc,
∂p

∂n
= 0, for x ∈ Γc, (10)

where n is the outward unit normal to the boundary, Γ = Γt∪Γc, with Γt and Γc being open (with
respect to Γ) subsets of Γ with nonzero measure. In the following, we omit the symbol “ ” over Γt
and Γc as it will be clear from the context that the essential boundary conditions are imposed on
closed subsets of Γ. Non-homogeneous boundary conditions are also of interest. Note that Dirichlet
boundary conditions for p imply Neumann boundary conditions for w and vice-versa.

The initial condition at t = 0 is given by,
(

1

M
p+ α divu

)
(x, 0) = 0, x ∈ Ω, (11)
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which yields the following mixed formulation of Biot’s three-field consolidation model:
For each t ∈ (0, T ], find (u(t),w(t), p(t)) ∈ V ×W ×Q such that

a(u,v)− (αp,div v) = (ρg,v), ∀ v ∈ V , (12)

(K−1µfw, r)− (p,div r) = (ρfg, r), ∀ r ∈W , (13)(
1

M

∂p

∂t
, q

)
+

(
α div

∂u

∂t
, q

)
+ (divw, q) = (f, q), ∀ q ∈ Q, (14)

where,

a(u,v) = 2µ

∫

Ω
ε(u) : ε(v) + λ

∫

Ω
divudiv v, (15)

corresponds to linear elasticity. The function spaces used in the variational form are

V = {u ∈H1(Ω) | u|Γc
= 0},

W = {w ∈H(div,Ω) | (w · n)|Γc = 0},
Q = L2(Ω),

where H1(Ω) is the space of square integrable vector-valued functions whose first derivatives are
also square integrable, and H(div,Ω) contains the square integrable vector-valued functions with
square integrable divergence.

We recall that the well-posedness of the continuous problem was established by Showalter [4],
and, for the three-field formulation by Lipnikov [28]. Next, we focus on the behavior of some
classical discretizations of Biot’s model.

2.1. Discretizations

First, we partition the domain Ω into n-dimensional simplices and denote the resulting partition
with Th, i.e., Ω = ∪T∈ThT . Further, with every simplex T ∈ Th, we associate two quantities which
characterize its shape: the diameter of T , hT = diam(T ), and the radius, ρT , of the n-dimensional
ball inscribed in T . The simplicial mesh is shape regular if and only if hT /ρT . 1 uniformly with
respect to T .

With the partitioning, Th, we associate a triple of piecewise polynomial, finite-dimensional
spaces,

Vh ⊂ V , Wh ⊂W , Qh ⊂ Q. (16)

While we specify two choices of the space Vh later, we fix Wh and Qh as follows,

Wh = {wh ∈W | wh|T = a+ ηx, a ∈ Rd, η ∈ R, ∀T ∈ Th},
Qh = {qh ∈ Q | qh|T ∈ P0(T ), ∀T ∈ Th},

where P0(T ) is the one-dimensional space of constant functions on T . We note that the inclusions
listed in (16) imply that the elements of Vh are continuous on Ω, the functions inWh have continuous
normal components across element boundaries, and that the functions in Qh are in L2(Ω). This
choice of Wh is the standard lowest order Raviart-Thomas-Nédélec space (RT0) and Qh is the
piecewise constant space (P0).

Finally, using backward Euler as a time discretization on a time interval (0, tmax ] with constant
time-step size τ , the discrete scheme corresponding to the three-field formulation (12)-(14) reads:
Find (umh ,w

m
h , p

m
h ) ∈ Vh ×Wh ×Qh such that

a(umh ,vh)− (αpmh ,div vh) = (ρg,vh), ∀ vh ∈ Vh, (17)

τ(K−1µfw
m
h , rh)− τ(pmh ,div rh) = τ(ρfg, rh), ∀ rh ∈Wh, (18)(

1

M
pmh , qh

)
+ (α divumh , qh) + τ(divwm

h , qh) = (f̃ , qh), ∀ qh ∈ Qh, (19)
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where (f̃ , qh) = τ(f, qh) +
(

1
M p

m−1
h , qh

)
+
(
α divum−1

h , qh
)
, and,

(umh ,w
m
h , p

m
h ) ≈ (u(·, tm),w(·, tm), p(·, tm)) , tm = mτ, m = 1, 2, . . .

Note that (18) has been scaled by τ for symmetry reasons.

2.2. Effects of permeability on the error of approximation

For Vh, we start with a popular finite-element approximation for (12)–(14) by choosing

Vh = Vh,1, with Vh,1 := {vh ∈ V
∣∣ vh|T ∈ [P1(T )]d, for all T ∈ Th},

where P1(T ) is the space of linear polynomials on T ∈ Th. Then, Vh,1 is the space of piecewise
linear (with respect to Th), continuous vector-valued functions. For uniformly positive definite per-
meability tensor, K, such choice of spaces has been successfully employed for numerical simulations
of Biot’s consolidation model (see [23, 28]). However, the heuristic considerations that expose some
of the issues with this discretization are observed in cases when K → 0. In such cases, w → 0
and the discrete problem approaches a P1-P0 discretization of the Stokes’ equation. As it is well
known, the element pair, Vh,1 ×Qh, does not satisfy the inf-sup condition and is unstable for the
Stokes’ problem. In fact, on a uniform grid in 2D, it is easy to prove that volumetric locking occurs,
namely, that the only divergence-free function from Vh,1 is the zero function. More precisely,

dim(Qh) > dimVh > dim Range(divh), divh = div
∣∣
Vh
.

These inequalities imply that divh is not an onto operator, and, hence, the pair of spaces violates
the inf-sup condition associated with the discrete Stokes’ problem. More details on this undesirable
phenomenon for Stokes are found in the classical monograph [29] and also in [30, pp. 45–100] and
[31].

Here, we demonstrate numerically that for Biot’s model, the error in the finite-element approx-
imation does not decrease when the permeability is small relative to the mesh size. We consider
Ω = (0, 1) × (0, 1), and approximate (12)-(14) subject to homogeneous Dirichlet boundary condi-
tions for u, and Neumann boundary conditions for p for the rest of Γ. We cover Ω with a uniform
triangular grid by dividing an N × N uniform square mesh into right triangles, where the mesh
spacing is defined by h = 1

N . The material parameters are λ = 2, µ = 1, µf = 1, α = 1, and
M = 106. We consider a diagonal permeability tensor K = kI with constant k, and introduce the
hydraulic conductivity, κ = k/µf . The other data is set so that the exact solution is given by

u(x, y, t) = curlϕ =

(
∂yϕ
−∂xϕ

)
, ϕ(x, y) = [xy(1− x)(1− y)]2,

p(x, y, t) = 1.

Finally, we set τ = 1 and tmax = 1, so that we only perform one time step.
As seen in Table 2.1 the energy norm (‖v‖2A := a(v,v) for v ∈ V ) for the displacement errors and

the L2-norm for pressure errors do not decrease until the mesh size is sufficiently small (compared
with the permeability). Thus for small permeabilities, this could result in expensive discretizations
which are less applicable to practical situations.

5



N = 8 N = 16 N = 32 N = 64 N = 128

κ = 10−4 ‖u− uh‖A 0.0209 0.0089 0.0043 0.0022 0.0011
‖p− ph‖L2 0.0535 0.0088 0.0015 0.0003 7.38× 10−5

κ = 10−6 ‖u− uh‖A 0.0477 0.0271 0.0060 0.0022 0.0011
‖p− ph‖L2 0.3277 0.3199 0.0763 0.0099 0.0012

κ = 10−8 ‖u− uh‖A 0.0503 0.0497 0.0418 0.0147 0.0019
‖p− ph‖L2 0.3553 0.7157 1.1509 0.6537 0.1152

κ = 10−10 ‖u− uh‖A 0.0503 0.0503 0.0501 0.0484 0.0330
‖p− ph‖L2 0.3550 0.7271 1.4576 2.7836 3.4508

Table 2.1: Energy norm and L2-norm for displacement and pressure errors, respectively, for various values of hydraulic
conductivity, κ = (k/µf ), and number of elements in each direction, N . Results confirm poor approximation when
κ/h is small.

3. Stabilization and perturbation of the bilinear form

To resolve the above issue, we introduce a well-known stabilization technique based on enrich-
ment of the piecewise linear continuous finite-element space, Vh,1, with edge/face (2D/3D) bubble
functions (see [32, pp. 145-149]). The discretization described below is based on a Stokes-stable
pair of spaces (Vh, Qh) with Vh ⊃ Vh,1. As we show later, in Section 4, this stabilization gives a
proper finite-element approximation of the solution of Biot’s model independently of the size of the
permeability, K, or hydraulic conductivity, κ.

3.1. Stabilization by face bubbles

To define the enriched space, following [32], consider the set of (d − 1) dimensional faces from
Th and denote this set by E = Eo∪E∂ , where Eo is the set of interior faces (shared by two elements)
and E∂ is the set of faces on the boundary. In addition, EΓt is the set of faces on the boundary
Γt and Eo,t = Eo ∩ EΓt . Note, if Γt = ∂Ω (pure traction boundary condition), then EΓt = E∂ and
Eo,t = E . For any face e ∈ Eo, such that e ∈ ∂T , and T ∈ Th, let ne,T be the outward (with respect
to T ) unit normal vector to e. With every face e ∈ Eo, we also associate a unit vector ne which
is orthogonal to it. Clearly, if e ∈ ∂T we have ne = ±ne,T . For the boundary faces e ∈ E∂ , we
always set ne = ne,T , where T is the unique element for which we have e ⊂ ∂T . For the interior
faces, the particular direction of ne is not important, although it is important that this direction
is fixed. More precisely,

ne = ne,T+ = −ne,T− if e = T+ ∩ T−, and T± ∈ Th, (20)

Further, with every face e ∈ E , e = T+ ∩ T−, we associate a vector-valued function Φe,

Φe = ϕene, with ϕe

∣∣∣∣
T±

= ϕe,T± , and ϕe,T± =
d+1∏

k=1,k 6=j±
λk,T± , (21)

where λk,T± , k = 1, . . . , (d+ 1) are barycentric coordinates on T± and j± is the vertex opposite to
the face e in T±. We note that Φe ∈ V is a continuous piecewise polynomial function of degree d.

Finally, the stabilized finite-element space Vh is defined as

Vh = Vh,1 ⊕ Vb, Vb = span{Φe}e∈Eo,t . (22)
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The degrees of freedom associated with Vh are the values at the vertices of Th and the total flux
through e ∈ Eo,t of (I −Π1)vh, where Π1 is the standard piecewise linear interpolant, Π1 : C(Ω) 7→
Vh,1. Then, the canonical interpolant, Π : C(Ω) 7→ Vh, is defined as:

Πv = Π1v +
∑

e∈Eo,t
veΦe, ve =

1

|e|

∫

e
(I −Π1)v.

With this choice of Vh, the variational form, (17)–(19), remains the same and we have the following
block form of the discrete problem:

A




Ub
Ul
W
P


 = b, with A =




Abb Abl 0 Gb
ATbl All 0 Gl
0 0 τMw τG
GTb GTl τGT −Mp


 , (23)

where Ub, Ul, W and P are the unknown vectors for the bubble components of the displace-
ment, the piecewise linear components of the displacement, the Darcy velocity, and the pressure,
respectively. The blocks in the definition of A correspond to the following bilinear forms:

a(ubh,v
b
h)→ Abb, a(ulh,v

b
h)→ Abl, a(ulh,v

l
h)→ All,

−(αph,div vbh)→ Gb, −(αph,div vlh)→ Gl, −(ph, div rh)→ G,

(K−1µfwh, rh)→Mw,

(
1

M
ph, qh

)
→Mp,

where uh = ulh + ubh, ulh ∈ Vh,1, ubh ∈ Vb, and an analogous decomposition for vh.
Next, we define the following notion of stability for discretizations of Biot’s model needed for

the analysis.

Definition 3.1. The triple of spaces (Ṽh, W̃h, Q̃h) is Stokes-Biot stable if and only if the following
conditions are satisfied:

• a(uh,vh) ≤ CV ‖uh‖1‖vh‖1, for all uh ∈ Ṽh, vh ∈ Ṽh;

• a(uh,uh) ≥ αV ‖uh‖21, for all uh ∈ Ṽh;

• The pair of spaces (W̃h, Q̃h) is Poisson stable, i.e., it satisfies stability and continuity condi-
tions required by the mixed discretization of the Poisson equation;

• The pair of spaces (Ṽh, Q̃h) is Stokes stable.

Here, ‖ · ‖1 and ‖ · ‖ denote the standard H1 norm and L2 norm, respectively.

As mentioned earlier, the authors in [16] also propose a parameter-robust stable scheme for
Biot’s system based on the conditions above. Following the same idea, here, we introduce a norm
on Vh ×Wh ×Qh:

|||(uh,wh, ph)||| :=
[
‖uh‖A + τ‖wh‖2K−1µf

+ τ2ξ−1‖ divwh‖2 + ξ‖ph‖2
]1/2

, (24)

where ζ =
√
λ+ 2µ/d, ξ = α2

ζ2
+ 1

M , and ‖r‖K−1µf := (K−1µfr, r)1/2.

7



Further, we associate a composite bilinear form on the space, Vh ×Wh ×Qh,

B(uh,wh, ph;vh, rh, qh) := a(uh,vh)− (αph, div vh) + τ(K−1µfwh, rh)− τ(ph,div rh)

−
(

1

M
ph, qh

)
− (α divuh, qh)− τ(divwh, qh).

We then have the following theorem which shows that on every time step the discrete problem is
solvable.

Theorem 3.2. If the triple (Vh,Wh, Qh) is Stokes-Biot stable, then:

B(·, ·, · ; ·, ·, ·) is continuous with respect to |||(·, ·, ·)|||; and

the following inf-sup condition holds.

sup
(vh,rh,qh)∈Vh×Wh×Qh

B(uh,wh, ph;vh, rh, qh)

|||(uh,wh, ph)||| ≥ γ|||(vh, rh, qh)|||, (25)

with a constant γ > 0 independent of mesh size h, time step size τ , and the physical parame-
ters.

Proof. The proof of Theorem 3.2 follows directly from Case I in the proof found in [16, Theorem 6].

Remark 3.3. The weighted norm, (24), used here is slightly different from the norm used in [16].
In [16], the authors are concerned with the tightness of the bounds for the stability analysis. This is
not the focus here, but nevertheless, (24) also provides parameter-robustness, while still involving
the bulk modulus λ+ 2µ/d. This gives the norm some physical meaning and has been shown to be
effective in practice for other iterative schemes such as the fixed-stress splitting scheme [20].

Note that if we replace a(·, ·) with any spectrally equivalent bilinear form on Vh×Vh, the same
stability result holds true. In the next section, we introduce such a spectrally equivalent bilinear
form which allows for: (1) Efficient elimination of the degrees of freedom corresponding to the
bubble functions via static condensation; and (2) Derivation of optimal error estimates for the fully
discrete problem, following the analysis in [33].

4. Local perturbation of the bilinear form and elimination of bubbles

A straightforward elimination of the edge/face bubbles is not local, and, in general, leads to a
prohibitively large number of non-zeroes in the resulting linear system. To resolve this, we introduce
a consistent perturbation of a(·, ·), which has a diagonal matrix representation. It is then easy to
eliminate the unknowns corresponding to the bubble functions in Vb with no fill-in. This leads
to a stable P1-RT0-P0 discretization for the Biot’s model and, consequently, to a stable P1-P0
discretization for the Stokes’ equation.

First, consider a natural decomposition of u ∈ Vh:

u = ul + ub = Π1u︸︷︷︸
ul

+
∑

e∈Eo,t
ueΦe

︸ ︷︷ ︸
ub

, (26)
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and the local bilinear forms for T ∈ Th, u ∈ Vh, and v ∈ Vh:

aT (u,v) = 2µ

∫

T
ε(u) : ε(v) + λ

∫

T
divu div v. (27)

For the restriction of a(·, ·) onto the space spanned by bubble functions Vb, we have

ab(ub,vb) := a(ub,vb) =
∑

T∈Th
ab,T (ub,vb) =

∑

T∈Th

∑

e,e′∈∂T
ueve′aT (Φe′ ,Φe).

On each element, T ∈ Th, then introduce

db,T (u,v) = (d+ 1)
∑

e∈∂T
ueveaT (Φe,Φe), db(u,v) =

∑

T∈Th
db,T (u,v). (28)

Replacing ab(·, ·) with db(·, ·) gives a perturbation, aD(·, ·), of a(·, ·):

aD(u,v) := db(ub,vb) + a(ub,vl) + a(ul,vb) + a(ul,vl) (29)

4.1. A spectral equivalence result

To prove that the form aD(·, ·) and a(·, ·) are spectrally equivalent, we need several auxiliary
results. First, recall the definition of the rigid body motions (modes), R on Rd:

R =
{
v = a+ bx

∣∣ a ∈ Rd, b ∈ so(d)
}
,

where so(d) is the algebra of skew-symmetric (d × d) matrices. The dimension of R is 1
2d(d + 1)

and its elements are component-wise linear vector-valued functions.
Next, recall the classical Korn inequality [34, 35] for u ∈ H1(Y ) for a domain Y ⊂ Rd, star-

shaped with respect to a ball. As shown by Kondratiev and Oleinik in [36, 37],

inf
m∈so(d)

‖∇u−m‖L2(Y ) . ‖ε(u)‖L2(Y ), (30)

where the constant hidden in . depends on the shape regularity of Y , that is, on the ratio
diam(Y )

R
.

For convenience when referencing (30) later, we state the following lemma, which gives a simpler
version of the inequality defined on simplices, where Y = T ∈ Th.

Lemma 4.1. Let Th be a shape-regular simplicial mesh covering Ω. Then, the following inequality
holds for any T ∈ Th and u ∈H1(T ):

inf
m∈so(n)

‖∇u−m‖L2(T ) . ‖ε(u)‖L2(T ), (31)

where the constant hidden in “.” depends on the shape regularity constant of Th.

Defining the unscaled bilinear form, d̃b,T ,

d̃b,T (u,v) :=
∑

e∈∂T
ueveaT (Φe,Φe), (32)

we have the following local, spectral equivalence result.
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Lemma 4.2. For all T ∈ Th the following inequalities hold:

ηT d̃b,T (u,u) ≤ ab,T (u,u) ≤ (d+ 1)d̃b,T (u,u), for all u ∈ Vb, (33)

where the constant ηT is independent of hT and ρT .

Proof. Set aee′ = ab,T (Φe′ ,Φe) and note that aee = d̃b,T (Φe,Φe) for all e, e′ ∈ ∂T . The upper
bound follows immediately by two applications of the Cauchy-Schwarz inequality:

ab,T (u,u) =
∑

e,e′∈∂T
aee′ueue′ ≤

∑

e,e′∈∂T

√
aeeae′e′ |ueue′ | =

(∑

e∈∂T

√
aee|ue|

)2

≤ (d+ 1)
∑

e∈∂T
aeeu

2
e = (d+ 1)d̃b,T (u,u).

We prove the lower bound by establishing the following inequalities for u ∈ Vb:

h−2
T ‖u‖2L2(T ) . ab,T (u,u), and d̃b,T (u,u) . h−2

T ‖u‖2L2(T ). (34)

By definition for all u ∈ Vb and all rigid body modes r ∈ R, we have that Π1u = 0 and Π1r = r.
The classical interpolation estimates found in [38, Chapter 3] give

‖u‖2L2(T ) = ‖u− r−Π1(u− r)‖2L2(T ) . h2
T ‖∇(u− r)‖2L2(T ).

Taking the infimum over all r ∈ R and applying Korn’s inequality (Lemma 4.1) then yields

h−2
T ‖u‖2L2(T ) . inf

r∈R
‖∇(u− r)‖2L2(T ) = inf

m∈so(d)
‖∇u−m‖2L2(T ) . ‖ε(u)‖2L2(T ).

This shows the first inequality in (34), and to prove the second inequality, we note that from the
definition of d̃b,T (·, ·) and the inverse inequality, we have that

d̃b,T (u,u) .
∑

e∈∂T
u2
e

[
‖∇Φe‖2L2(T ) + λ‖ div Φe‖2L2(T )

]
. h−2

T

∑

e∈∂T
u2
e‖Φe‖2L2(T ).

Recalling the definition of Φe in (21) and the formula for integrating powers of the barycentric
coordinates, gives

Φe = ϕene,

∫

T
λβ11 . . . λ

βd+1

d+1 dx = |T | β1! . . . βd+1!d!

(β1 + . . .+ βd+1 + d)!
. (35)

It follows that ‖Φe‖2L2(T ) = cd|T | and
∫
T ΦeΦe′ = 1

2cd|T |(δee′ + ne · ne′), with cd = d! 2d

(3d)! . As the

Gram matrix (ne · ne′)e,e′∈∂T is positive semi-definite,

∑

e∈∂T
u2
e‖Φe‖2L2(T ) = cd|T |

∑

e∈∂T
u2
e ≤ cd|T |


∑

e∈∂T
u2
e +

∑

e,e′∈∂T
ueue′(ne · ne′)




=

∥∥∥∥∥
∑

e∈∂T
ueΦe

∥∥∥∥∥

2

L2(T )

= ‖u‖2L2(T ).

Multiplying by h−2
T on both sides of this inequality furnishes the proof of (34), completing the proof

of the Lemma.
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Next, we show the spectral equivalence for the bilinear forms a(·, ·) and aD(·, ·).
Lemma 4.3. The following inequalities hold:

a(u,u) ≤ aD(u,u) ≤ ηa(u,u), for all u ∈ Vh,
where η depends on the shape regularity of the mesh.

Proof. Let u ∈ Vh, u = ul + ub. From the definition of db(·, ·) in (28), ab,T (ub,ub) ≤ db,T (ub,ub),
and the lower bound follows immediately:

a(u,u)− aD(u,u) = ab(ub,ub)− db(ub,ub) =
∑

T∈Th
[ab,T (ub,ub)− db,T (ub,ub)] ≤ 0.

To prove the upper bound, we use the following local estimate, which is established using an inverse
inequality, a standard interpolation estimate, and Π1r = r for all rigid body modes r ∈ R,

aT (ub,ub) . ‖∇ub‖2L2(T ) . h−2
T ‖ub‖2L2(T ) = h−2

T ‖u−Π1u‖2L2(T )

= h−2
T ‖(u− r)−Π1(u− r)‖2L2(T ) . ‖∇(u− r)‖2L2(T ).

Taking the infimum over all r ∈ R and applying the Korn’s inequality (Lemma 4.1) then yields

aT (ub,ub) . inf
r∈R
‖∇(u− r)‖2L2(T ) = inf

m∈so(d)
‖∇u−m‖2L2(T ) . ‖ε(u)‖2L2(T ).

This inequality, combined with the definition of aD(·, ·), and the lower bound in Lemma 4.2
gives,

aD(u,u) = a(u,u) +
∑

T∈Th
db,T (ub,ub)− aT (ub,ub)

≤ a(u,u) +
∑

T∈Th

(
d+ 1

ηT
− 1

)
aT (ub,ub)

. a(u,u) +
∑

T∈Th

(
d+ 1

ηT
− 1

)
‖ε(u)‖2L2(T )

. a(u,u).

Since we have shown that the bilinear form aD(·, ·) can replace a(·, ·) in Definition 3.1, then
Theorem 3.2 holds when the bilinear form, B(·, ·, · ; ·, ·, ·), has aD(·, ·) instead of a(·, ·). Thus, the
variational problem,

aD(umh ,vh)− (αpmh ,div vh) = (ρg,vh), ∀ vh ∈ Vh, (36)

(K−1µfw
m
h , rh)− (pmh , div rh) = (ρfg, rh), ∀ rh ∈Wh, (37)(

1

M
∂̄tp

m
h , qh

)
+
(
α div ∂̄tu

m
h , qh

)
+ (divwm

h , qh) = (f, qh), ∀ qh ∈ Qh, (38)

has a unique solution and defines an invertible operator with inverse bounded independent of the
mesh size h. This observation plays a crucial role in the error estimates in the next subsection.

For later comparison, we define following block form of the discrete problem:

AD




Ub
Ul
W
P


 = b, with AD =




Dbb Abl 0 Gb
ATbl All 0 Gl
0 0 τMw τG
GTb GTl τGT −Mp


 , (39)

where everything is defined as before and Dbb corresponds to aD(ubh,v
b
h).
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4.2. Error estimates for the fully discrete problem

To derive the error analysis of the fully discrete scheme, following the standard error analysis of
time-dependent problems in Thomée [39], we first define the following elliptic projections ūh ∈ Vh,
w̄h ∈Wh, and p̄h ∈ Qh for t > 0 as usual,

aD(ūh,vh)− (αp̄h,div vh) = a(u,vh)− (αp,div vh), ∀vh ∈ Vh, (40)

(K−1µf w̄h, rh)− (p̄h, div rh) = (K−1µfw, rh)− (p,div rh), ∀rh ∈Wh, (41)

(div w̄h, qh) = (divw, qh), ∀qh ∈ Qh, (42)

Note that the above elliptic projections are decoupled; w̄h and p̄h are defined by (41) and (42),
which is a mixed formulation of the Poisson equation. Therefore, the existence and uniqueness of
w̄h and p̄h follow directly from standard results. After p̄h is defined, ūh is then determined by
solving (40), which is a linear elasticity problem, and again the existence and uniqueness of ūh
follow from standard results. Now, we split the errors as follows,

u(tn)− unh = (u(tn)− ūh(tn))− (unh − ūh(tn)) =: ρnu − enu,
w(tn)−wn

h = (w(tn)− w̄h(tn))− (wn
h − w̄h(tn)) =: ρnw − enw,

p(tn)− pnh = (p(tn)− p̄h(tn))− (pnh − p̄h(tn)) =: ρnp − enp .

Lemma 4.4. The following error estimates for the elliptic projections defined in (40)-(42) hold for
t > 0,

‖ρu‖1 ≤ ch (‖u‖2 + ‖p‖1) , (43)

‖ρw‖ ≤ ch‖w‖1, (44)

‖ρp‖ ≤ ch (‖p‖1 + ‖w‖1) . (45)

Proof. Error estimates in (44) and (45) follow from the error analysis of the mixed formulation of
Poisson problems. The estimate (43) follows from the triangle inequality:

‖ρu‖1 ≤ ‖u−Π1u‖1 + ‖Π1u− ūh‖1,

where Π1u is the linear interpolant of u. Using the coercivity of aD(·, ·) and that aD(Π1u,vh) =
a(Π1u,vh) ∀vh ∈ Vh, for the linear function, Π1u, we get,

αDV ‖Π1u− ūh‖21 ≤ aD(Π1u− ūh,Π1u− ūh) = a(Π1u,Π1u− ūh)− aD(ūh,Π1u− ūh)

Taking into account that ūh is the solution of equation (40),

αDV ‖Π1u− ūh‖21 ≤ a(Π1u− u,Π1u− ūh) + α(p− p̄h, div(Π1u− ūh))

≤ CDV ‖Π1u− u‖1‖Π1u− ūh‖1 + α‖p− p̄h‖‖Π1u− ūh‖1.

Then, it follows that

‖ρu‖1 ≤
(

1 +
CDV
αDV

)
‖u−Π1u‖1 +

α

αDV
‖ρp‖

The error estimate in (43) is obtained by using (45) and the standard error estimates for linear
finite elements.
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We similarly define the elliptic projection, ∂tuh, ∂twh, and ∂tph of ∂tuh, ∂twh, and ∂tph re-
spectively. This gives similar estimates as above for ∂tρu, ∂tρw, and ∂tρp, where on the right-hand
side of the inequalities we use norms of ∂tuh, ∂twh, and ∂tph instead of the norms of uh, wh, and
ph respectively.

Next, we estimate the errors, eu, ew, and ep using the following norm,

‖(uh,wh, ph)‖τ,h :=

(
‖uh‖21 + τ‖wh‖2K−1µf

+

(
1

M
+ 1

)
‖ph‖2

)1/2

,

where ‖wh‖2K−1µf
:= (K−1µfwh,wh).

Lemma 4.5. Let Rju := ∂tu(tj)− ūh(tj)−ūh(tj−1)
τ . Then,

‖(emu , emw , emp )‖τ,h ≤ c


‖e0

u‖1 +
1

M
‖e0
p‖+ τ

n∑

j=1

‖Rju‖1


 . (46)

Proof. Choosing v = vh in (12), r = rh in (13), and q = qh in (14), subtracting these equations
from (36), (37) and (38), and using the definition of elliptic projections given in (40), (41), and
(42) yields,

aD(emu ,vh)− (αemp ,div vh) = 0, (47)

(K−1µfe
m
w , rh)h − (emp ,div rh) = 0, (48)

−
(

1

M
∂̄te

m
p , qh

)
− (α div ∂̄te

m
u , qh)− (div emw , qh) = −(divRmu , qh). (49)

Then, choosing vh = ∂̄te
m
u , rh = emw and qh = −emp in (47), (48), and (49), respectively, and adding

these equations, yields,

‖emu ‖2aD + τ‖emw‖2K−1µf
+

1

M
‖emp ‖2 ≤ ‖emu ‖aD‖em−1

u ‖aD +
1

M
‖emp ‖‖em−1

p ‖+ τ‖divRmu ‖‖emp ‖.

Using the inf-sup condition corresponding to the mixed formulation of the Darcy problem with
RT0-P0 and using the equality in (48) gives,

‖emp ‖ ≤ c sup
0 6=rh∈Wh

(emp , div rh)

‖rh‖H(div)
= c sup

06=rh∈Wh

(K−1µfe
m
w , rh)

‖rh‖H(div)
≤ c̄‖emw‖K−1µf . (50)

By applying ab ≤ a2

2
+
b2

2
and the bound in (50), the following inequality holds,

‖emu ‖2aD + τ‖emw‖2K−1µf
+

1

M
‖emp ‖2 ≤ ‖em−1

u ‖2aD +
1

M
‖em−1
p ‖2 + cτ‖Rmu ‖21.

This implies by recursion that

‖emu ‖2aD + τ‖emw‖2K−1µf
+

1

M
‖emp ‖2 ≤ ‖e0

u‖2aD +
1

M
‖e0
p‖2 + cτ

m∑

j=1

‖Rju‖21.

From the coercivity and continuity of the bilinear form, aD(·, ·), the estimate in (46) is obtained.
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Finally, following the same procedures of Lemma 8 in [14], we have

n∑

j=1

‖Rju‖1 ≤ c
(∫ tn

0
‖∂ttu‖1dt+

1

τ

∫ tn

0
‖∂tρu‖1dt

)
. (51)

Thus, we derive the following error estimates.

Theorem 4.6. Let u, w, and p be the solutions of (12)-(14) and unh, wn
h , and pnh be the solutions

of (36)-(38). If the following regularity assumptions hold,

u(t) ∈ L∞
(
(0, T ],H1

0(Ω)
)
∩ L∞

(
(0, T ],H2(Ω)

)
,

∂tu ∈ L1
(
(0, T ],H2(Ω)

)
, ∂ttu ∈ L1

(
(0, T ],H1(Ω)

)
,

w(t) ∈ L∞ ((0, T ], H0(div,Ω)) ∩ L∞
(
(0, T ],H1(Ω)

)
,

p ∈ L∞
(
(0, T ], H1(Ω)

)
, ∂tp ∈ L1

(
(0, T ], H1(Ω)

)
,

then,

‖(u(tn)− unh,w(tn)−wn
h , p(tn)− pnh)‖τ,h ≤ c

{
‖e0

u‖1 +
1

M
‖e0
p‖+ τ

∫ tn

0
‖∂ttu‖1dt

+h

[
‖u‖2 + τ1/2‖w‖1 + ‖w‖1 + ‖p‖1 +

∫ tn

0
(‖∂tu‖2 + ‖∂tp‖1) dt

]}
. (52)

Proof. The error estimate follows directly from (46), (51), (43)-(45), and the triangle inequality.

4.3. Practical implementation

Since db(·, ·) has a diagonal matrix representation, we can eliminate the degrees of freedom
corresponding to the bubble functions in order to have the same degrees of freedom as in the
original P1-RT0-P0 method for the three-field formulation of the poroelasticity problem. After
eliminating such unknowns from (39), we obtain a (3× 3) block discrete linear system with similar
blocks:

ÂD =




All −ATblD−1
bb Abl 0 Gl −ATblD−1

bb Gb
0 τMw τG

GTl −GTb D−1
bb Abl τGT −Mp −GTb D−1

bb Gb


 . (53)

5. Stabilized P1-P0 discretization for the Stokes problem

When the permeability tends to zero in the poroelasticity problem, a Stokes-type problem is
obtained. Thus, all the results obtained above can be directly applied to Stokes’ equations. In
particular, after the elimination of the bubble functions, one obtains a finite-element pair for the
Stokes’ system, based on piecewise linear finite elements for the velocity and piecewise constant
functions for the pressure. This gives a Stokes-stable finite-element method with a minimum number
of degrees of freedom.

To illustrate this further, consider the Stokes’ problem for steady flow,

− div(2νε(u)− pI) = f , in Ω, (54)

divu = 0, in Ω, (55)

u = 0, on Γ, (56)
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where u denotes the fluid velocity, p is the pressure, ν is the viscosity constant, f ∈ (L2(Ω))d is a
given forcing term acting on the fluid, and ε(u) = 1

2(∇u +∇ut). By considering V = H1
0 (Ω) =

{u ∈ H1(Ω) | u = 0 on Γ} and Q = L2
0(Ω) = L2(Ω)/R as the subspace of L2(Ω) consisting of

functions with zero mean value on Ω, we write the weak formulation of problem (54)-(56) as follows

aS(u,v)− (p,div v) = (f ,v), ∀ v ∈ V , (57)

(divu, q) = 0, ∀ q ∈ Q, (58)

where aS(u,v) = aS(u,v) = 2ν

∫

Ω
ε(u) : ε(v). As in the previous sections, we introduce the

following finite-dimensional subspaces. For velocity, let Vh be the space of piecewise linear elements
enriched with the normal components of face bubble functions. For pressure, let Qh be the subspace
of piecewise constant functions. Then, the discrete variational formulation is given by:
Find (uh, ph) ∈ Vh ×Qh such that

aS(uh,vh)− (ph,div vh) = (f ,vh), ∀ vh ∈ Vh, (59)

(divuh, qh) = 0. ∀ qh ∈ Qh, (60)

This formulation gives rise to the following block form of the fully discrete problem,

AS



Ub
Ul
P


 = b, with AS =




Abb Abl Gb
ATbl All Gl
GTb GTl 0


 , (61)

where Ub, Ul, and P are the unknown vectors corresponding to the bubble component of the
velocity, the linear component of the velocity, and the pressure, respectively. With the aim of
eliminating the degrees of freedom corresponding to the bubble functions, we replace Abb by a
spectrally-equivalent diagonal matrix Dbb, obtaining the following block form of the coefficient
matrix,

ADS =




Dbb Abl Gb
ATbl All Gl
GTb GTl 0


 . (62)

Finally, we eliminate unknowns corresponding to the bubbles to obtain a 2 by 2 system,

ÂDS =

(
All −ATblD−1

bb Abl Gl −ATblD−1
bb Gb

GTl −GTb D−1
bb Abl −GTb D−1

bb Gb

)
. (63)

The resulting scheme is a stabilized P1-P0 discretization of Stokes in which stabilization terms
appear in every sub-block. Optimal order error estimates for this stabilized scheme follow from the
estimates provided in [32, pp. 145-149] for the pair of spaces (Vh, Qh), Vh = Vh,1 ⊕ Vb.

5.1. Mass Conservation

Finally, we briefly comment on an efficient post-processing step to ensure that the numerical
solution obtained above preserves mass. Let (uh, ph) ∈ Vh×Qh, with uh = ul+ub be the numerical
solution to Stokes’ equation obtained in the following way: first, we solve System (63) for ul; and
then, we compute ub. Note that the second step requires only the solution of systems with Dbb,
which is a diagonal matrix. A mass-conserving approximation is then obtained by interpolating
the numerical solution using the interpolant from the lowest-order BDM space (see Brezzi, Douglas
and Marini [40], and Brezzi, Douglas, Duran and Fortin [41] for more details).
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More specifically, let ΠBDM
h be the standard interpolation operator in the BDM space as defined

in [29], [42, Section 5.4]. From the commuting diagram property of BDM elements (see, e.g. [31,
Proposition 2.5.2]),

div ΠBDM
h w = Π0

h divw,

for all sufficiently smooth w ∈ V . Here, Π0
h is the L2(Ω)-orthogonal projection on the space of

piecewise constants, Qh. This implies that

∫

Ω
div ΠBDM

h uhqh =

∫

Ω
divuhqh = 0, for all qh ∈ Qh, (64)

which shows that ΠBDM
h uh is indeed mass conservative.

Furthermore, we show that ΠBDM
h uh also approximates the solution, u, to Stokes’ equation in

the L2(Ω)-norm. We recall the following classical error estimate for the BDM interpolant (see,
e.g. [31, Proposition 2.5.4], [42, Theorem 5.25]):

‖w −ΠBDM
h w‖ . h|w|1. (65)

As a consequence from (65),

‖ΠBDM
h w‖ ≤ ‖w −ΠBDM

h w‖+ ‖w‖ . h|w|1 + ‖w‖. (66)

Now, using estimates (65) and (66), we obtain the following a priori error estimate,

‖u−ΠBDM
h uh‖ ≤ ‖u−ΠBDM

h u‖+ ‖ΠBDM
h (u− uh)‖

. h|u|1 + h|u− uh|1 + ‖u− uh‖

. h|u|1 + |u− uh|1 . h‖u‖2.

Note that we have used Korn’s inequality for (u − uh), which is a function vanishing on the
Dirichlet part of the boundary. Thus, (64) and the a priori estimate above guarantee that the
BDM interpolant of the numerical solution, ΠBDM

h uh, is a mass-conserving approximation to u,
which requires little extra cost to compute.

6. Numerical Results

In this section we illustrate the theoretical convergence results obtained in previous sections. We
present results for both the poroelastic problem and for Stokes’ equations. All test problems were
implemented in the HAZmath library [43], which contains routines for finite elements, multilevel
solvers, and graph algorithms.

6.1. Poroelastic problem

First we consider the test included in Section 2.2, in order to show the corresponding results
when the stabilized P1-RT0-P0 is considered. Table 6.1 displays the energy norm errors for dis-
placement and L2-norm errors for pressure obtained by applying the scheme after diagonalizing the
block corresponding to the bubble functions, AD (System (39)). For this test, different values of
the parameter κ and different mesh-sizes are considered to show that the errors are appropriately
reduced independently of the physical parameters, in contrast to the original P1-RT0-P0 scheme
(Table 2.1).

We also compare the obtained errors with those provided by the fully enriched element, A
(System (23)), in order to see that the same error reduction is achieved. Figure 6.1, displays a
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N = 8 N = 16 N = 32 N = 64 N = 128

κ = 10−4 ‖u− uh‖A 0.0151 0.0072 0.0037 0.0019 0.0010
‖p− ph‖L2 0.0322 0.0168 0.0104 0.0052 0.0020

κ = 10−6 ‖u− uh‖A 0.0153 0.0073 0.0036 0.0018 0.0009
‖p− ph‖L2 0.0349 0.0161 0.0074 0.0032 0.0012

κ = 10−8 ‖u− uh‖A 0.0153 0.0073 0.0036 0.0018 0.0009
‖p− ph‖L2 0.0349 0.0162 0.0074 0.0035 0.0017

κ = 10−10 ‖u− uh‖A 0.0153 0.0073 0.0036 0.0018 0.0009
‖p− ph‖L2 0.0349 0.0162 0.0075 0.0035 0.0017

Table 6.1: Energy norm for displacement errors and L2-norm for pressure errors by considering different values of κ
and different mesh-sizes, using the “diagonal” bubble formulation, AD (39).

comparison of the displacement and pressure errors in the energy and L2 norms, respectively, for
different grid sizes. We choose κ = 10−8 here, though similar pictures are obtained for different
values of κ. We observe that the slopes corresponding to both schemes are the same, although the
scheme corresponding to the diagonal version provides slightly worse errors. However, this scheme,
when the bubble block is eliminated, uses less degrees of freedom and is easily implemented from
an already existing P1-RT0-P0 code.
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Figure 6.1: Two-Dimensional Biot’s Problem. Reduction of the (a) displacement and (b) pressure errors for different
mesh-sizes, by using the enriched finite element scheme, A (23), as well as the scheme with diagonal block used for
the bubble functions, AD (39).

To demonstrate the method on a realistic test problem, we also consider a three-dimensional
footing problem (see [44]). The computational domain is a unit cube modeling a block of porous
soil. A uniform load of intensity 3× 104N/m2 is applied in a square of size 0.5× 0.5m2 at the top
of the domain. The base of the domain is assumed to be fixed while the rest of the domain is free
to drain. For the material properties, the Lame coefficients are computed in terms of the Young
modulus, E, and the Poisson ratio, ν: λ = Eν

(1−2ν)(1+ν) and µ = E
1+2ν . We fix E = 3 × 104N/m2

and ν = 0.45 to simulate a somewhat stiff material, and consider K = 10−6I.
Figure 6.2 compares the solution of this footing problem using both the fully enriched element, A
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(System (23)), and the scheme after diagonalizing the block corresponding to the bubble functions,
AD (System (39)). For simplicity, we compare the vertical displacement and the pressure. We see
little difference between the two sets of results. We confirm this by computing the difference in the
two solutions using the energy norm for the displacements and the L2 norm for pressure. Figure
6.3 shows convergence of the two approaches with mesh size.

Vertical Displacement, u3, using A. Vertical Displacement, u3, using AD.

Pressure, p, using A. Pressure, p, using AD.

Figure 6.2: Three-Dimensional Footing Problem. Results are on a 64× 64× 64 element grid.

6.2. Stokes’ problem

While it is well-known that the P1-P0 finite element pair is not stable for Stokes’ equations,
we show here that the new formulation, ÂDS (63), resulting from the elimination of the normal
components of the bubbles, does provides a stable method. Consider (54)-(56) on a unit square
(0, 1)× (0, 1), where the right-hand side f is chosen such that the analytical solution is given by

u(x, y) = (sin(πx) cos(πy),− cos(πx) sin(πy)) , p(x, y) = 0.5− x.

Figure 6.4 compares the error reduction for both the velocity and pressure using the bubble function
enhanced schemes described by AS (61) and ADS (62).
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Figure 6.3: Comparison of the displacement and pressure on the three-dimensional footing problem, using the fully-
enriched formulation, A (23) (subscript F ) and the scheme with diagonal block used for the bubble functions, AD

(39) (subscript D).

We perform a similar three-dimensional test, solving (54)-(56) on a unit cube, where the right-
hand side f is chosen such that the analytical solution is given by

u(x, y) = (− sin(πx) sin(π (y − z)), sin(πy) sin(π (x− z)),− sin(πz) sin(π (x− y))) , p(x, y) = 0.5−x.

The results are shown in Figure 6.5.
For all test problems, the energy norm for the velocity is defined as ‖v‖2A := aS(v,v) =

2µ(ε(v), ε(v)) for v ∈ V . Both methods give the same, optimal, order of convergence, demonstrat-
ing that the inclusion of the bubble functions guarantee the stability of the method. Moreover,
though the errors are slightly higher, the elimination of the bubble functions would provide a stable
convergent method, but reduces the problem to one that contains the same number of degrees of
freedom as the P1-P0 discretization. Thus, we get a stable scheme with no increase in cost.

7. Conclusions

In this paper, we have shown how to stabilize the popular P1-RT0-P0 finite-element discretiza-
tion for a three-field formulation of the poroelasticity problem. By adding the normal components
of the bubble basis functions associated with the faces of the triangulation to the P1 element for
displacements, we have demonstrated that an inf-sup condition is satisfied independently of the
physical and discretization parameters of the problem. Moreover, the degrees of freedom added
to the faces can be eliminated resulting in a stable scheme with the same number of unknowns as
in the initial P1-RT0-P0 discretization. Furthermore, this idea has been extended to the Stokes’
equations, yielding a stable finite-element formulation with the lowest possible number of degrees of
freedom, equivalent to a P1-P0 discretization. Future work includes investigating such formulations
and their performance for various applications in poroelasticity, and extending the discretization
to other PDE systems which have simliar properties to the Stokes’ equations.
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