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\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Maxwell's equations are a system of partial differential equations that govern the
laws of electromagnetic induction. We study a mimetic finite-difference (MFD) discretization of
the equations which preserves important underlying physical properties. We show that, after mass-
lumping and appropriate scaling, the MFD discretization is equivalent to a structure-preserving
finite-element (FE) scheme. This allows for a transparent analysis of the MFD method using the
FE framework and provides an avenue for the construction of efficient and robust linear solvers for
the discretized system. In particular, block preconditioners designed for FE formulations can be
applied to the MFD system in a straightforward fashion. We present numerical tests which verify
the accuracy of the MFD scheme and confirm the robustness of the preconditioners.
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1. Introduction. We consider the numerical solution of Maxwell's equations in
a bounded connected domain \Omega \in \BbbR 3:

\partial \bfitB 

\partial t
+\nabla \times \bfitE = 0 in \Omega \times (0, T ],(1.1)

\epsilon 
\partial \bfitE 

\partial t
 - \nabla \times \mu  - 1\bfitB =  - \bfitj in \Omega \times (0, T ],(1.2)

\nabla \cdot \epsilon \bfitE = 0 in \Omega \times (0, T ],(1.3)

\nabla \cdot \bfitB = 0 in \Omega \times (0, T ].(1.4)

Here, \bfitB (\bfitx , t) and \bfitE (\bfitx , t) are the unknown magnetic and electric fields, \epsilon (\bfitx ) and
\mu (\bfitx ) are the permittivity and permeability of the medium, respectively, and \bfitj (\bfitx , t)
is the current density satisfying \nabla \cdot \bfitj = 0. For simplicity, we choose \epsilon = \mu = 1 and
impose homogeneous essential (Dirichlet) boundary conditions which model a perfect
conductor:

(1.5) \bfitB \cdot \bfitn 
\bigm| \bigm| 
\partial \Omega 

= 0, \bfitn \times \bfitE 
\bigm| \bigm| 
\partial \Omega 

= 0.

More general cases can be handled with straightforward modifications. In particular,
the analysis presented in this paper still holds with nonconstant \epsilon (\bfitx ) and \mu (\bfitx ), for
example, by using a piecewise constant approximation for the parameters.
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FE FRAMEWORK OF MFD FOR MAXWELL A2639

The coupled equations (1.1)--(1.2), Faraday's and Ampere's laws, model the inter-
action of the electric and magnetic fields, while the Gauss laws, (1.3)--(1.4), model the
flux constraints of the individual fields. One of the major difficulties in numerically
solving the Maxwell system is related to the constraints (1.3) and (1.4), as it is often
necessary, by physical or other considerations, to have analogues of such identities on
the discrete level.

To rectify this, structure-preserving discretizations are used to guarantee that
conservation laws on the continuous level still hold at the discrete level. While there
are a variety of such numerical methods, we focus in this paper on the relationship
between a mimetic finite-difference (MFD) method and a structure-preserving mixed
finite-element method (FEM) derived via finite-element exterior calculus (FEEC).

The MFD method is defined by operators designed to ``mimic"" the continuous
level operators [8, 19, 22, 31]. This technique is straightforward to derive and, by
drawing similarities to the continuous operators, it is quite easy to see that the discrete
operators do in fact obey the continuous level properties. MFD is simple to implement,
can be applied directly to the strong form of the PDE system, and has few mesh
requirements (i.e., general polyhedral grids can be used). Like most finite-difference
methods, however, the error estimates and convergence theory require high regularity;
well-posedness is difficult to prove; and it is not always clear how to optimally solve
the resulting linear system.

On the other hand, structure-preserving FEMs for Maxwell's equations have been
widely studied (see, e.g., [2, 3, 26, 27]). Using FEEC [4, 16], one can show that
de Rham exact sequences are guaranteed on the discrete level. Furthermore, in the
FEEC setting, the convergence theory and a priori error estimates are well known, and
showing well-posedness of the discretized weak form follows directly from Babu\v ska--
Brezzi theory [5, 12]. Moreover, the construction of efficient solvers is also well devel-
oped [9, 10, 23, 24, 25, 28, 27].

An important question that arises when using such discretizations for PDEs is
how to efficiently solve the resulting linear system. One widely used method for
solving Maxwell's system discretized by FEM is based on block preconditioners for
Krylov methods, constructed using Schur complements. More generally, block precon-
ditioners for saddle point systems, a class that the full Maxwell system falls into, are
widely studied [9, 10, 23, 24, 25], and robustness and efficiency results are well estab-
lished. In general, to ensure that the iterative solver does not destroy the properties of
the discretization, preconditioners must be developed that also preserve the operator
properties at each time step. This is essential for ensuring that the resulting numerical
solution obeys the PDE constraints throughout both the spatial and the time domains.
Such preconditioners have been developed for the full Maxwell system, (1.1)--(1.4),
using mixed FEM discretizations [2, 27], as well as for the simplified time-harmonic
form of Maxwell's equations [15, 32]. Another variety of electromagnetic applications
comes in the form of magnetohydrodynamics, where a similar block-preconditioning
approach can be used for a FEM divergence-free preserving discretization [28].

In this work, we adapt the preconditioners developed in [2] for the Maxwell system
with impedance boundary conditions. As in [2, 3], we consider a variation of (1.1)--
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A2640 ADLER ET AL.

(1.4), where an auxiliary pressure variable, p(\bfitx , t), is introduced:

\partial \bfitB 

\partial t
+\nabla \times \bfitE = 0 in \Omega \times (0, T ],(1.6)

\partial \bfitE 

\partial t
 - \nabla \times \bfitB +\nabla p =  - \bfitj in \Omega \times (0, T ],(1.7)

\partial p

\partial t
+\nabla \cdot \bfitE = 0 in \Omega \times (0, T ].(1.8)

It is straightforward to show that with suitable initial conditions, p(\bfitx , 0) = 0 and
\nabla \cdot \bfitB (\bfitx , 0) = 0, (1.1)--(1.4) is equivalent to (1.6)--(1.8). A structure-preserving dis-
cretization is essential to allowing this form to be solved in place of the full Maxwell
system.

Ideally, we would like to have the ease and simplicity of the MFD method with
all of the well-posedness and preconditioning theory that supports the FEM. Similar
to [11, 29], in this paper, we apply the MFD method to the Maxwell system and
then analyze it in a FE framework. By using mass-lumping schemes and scaled
basis functions in the FEM, we show that the two methods yield equivalent linear
systems. This equivalence is used to apply the FE theory to the MFD system to
show well-posedness of the mimetic discretization. Additionally, since robust block
preconditioners have been designed for the Maxwell FE system that preserve the
constraints at all time iterations [2], we demonstrate how to slightly modify those
results to obtain robust linear solvers for the MFD system of Maxwell's equations.

This paper is organized as follows. In section 2, we introduce the notation and
discretization technique for MFD and apply it to the Maxwell system. Section 3
recalls the FE discretization and presents a mass-lumped alternative. Then section 4
draws connections between the two methods for Maxwell and shows their equivalence,
and well-posedness of the MFD system is proven. Section 5 introduces and analyzes
block preconditioners for the MFD system, proving their robustness. Finally, section
6 presents numerical results to demonstrate the theoretical results, and concluding
remarks and future work are discussed in section 7.

2. The mimetic finite-difference method. Following [31], we construct a
primal (Delaunay) tetrahedral mesh and a dual (Voronoi) polyhedral grid. Denote
the vertices/nodes of the Delaunay triangulation by \{ \bfitx D

i \} ND
i=1, and an edge on the

Delaunay mesh connecting nodes \bfitx D
i and \bfitx D

j by \bfite Dij , with unit tangent vector \bfitt Dij
pointing from vertex of lower index to vertex of higher index. The Delaunay tetrahedra
are given by Dk, k = 1, . . . , NV . Each Dk has face set (boundary) \partial Dk. The neighbor
set of tetrahedron Dk, given by \scrN D

k , is defined as the set of indices of the tetrahedra
that share common planes withDk, i.e., \scrN D

k := \{ m
\bigm| \bigm| \partial Dk\cap \partial Dm \not = \emptyset , m = 1, . . . , NV \} .

The common plane (face) between Dk and Dm is given by \partial Dkm. For tetrahedron Dk

with face \partial Dkm, we define the unit outward normal vector \bfitn D
km pointing outward from

Dk. Analogous to the above definitions, we have for the dual Voronoi mesh, nodes,
\{ \bfitx V

k \} 
NV

k=1, edges, \bfite 
V
km, with unit tangent vector \bfitt Vkm, polyhedra, Vi, i = 1, . . . , ND,

face set, \partial Vi, neighbor set, \scrN V
i , common plane, \partial Vij , and outward unit normal vector

\bfitn V
ij .

This dual mesh configuration yields some useful properties that are exploited
when defining the MFD operators. The Voronoi point \bfitx V

k is the circumcenter of
the Delaunay tetrahedron Dk. Additionally, the Delaunay nodes define the Voronoi
polyhedra. We define Vi as the set of points in the domain that lie closer to Delaunay
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FE FRAMEWORK OF MFD FOR MAXWELL A2641

node \bfitx D
i than any other Delaunay node:

Vi := \{ \bfitx \in \Omega 
\bigm| \bigm| | \bfitx  - \bfitx D

i | \leq | \bfitx  - \bfitx D
j | , j = 1, . . . , ND, j \not = i\} .

Furthermore, we have that each Delaunay edge \bfite Dij is orthogonal to the Voronoi face

\partial Vij , and each Voronoi edge \bfite Vkm is orthogonal to Delaunay face \partial Dkm. This gives us
a one-to-one correspondence between nodes on one mesh to polyhedra on the other,
and edges on one mesh to faces on the other. Figure 1 illustrates an example mesh
in two dimensions to further highlight the notation used. Note that this dual mesh
configuration with these properties requires that the circumcenters of the Delaunay
triangulation lie in the interior of the Delaunay tetrahedra. While this is not a strict
requirement for the MFD method to work, it allows for simplicity in the analysis and
implementation (see [13, 31]).

2.1. Grid functions and MFD operators. Following [19, 31], we define func-
tions and operators on both the Delaunay and the Voronoi meshes. First, approxi-
mations of scalar functions in the domain are represented with scalar grid functions
that are defined on the nodes of the meshes. Thus, scalar functions defined on the
Delaunay nodes are constants on Voronoi polyhedra, and scalar functions on Voronoi
nodes are constants on Delaunay tetrahedra. The corresponding function spaces are
as follows:

HD := \{ u(\bfitx )
\bigm| \bigm| u(\bfitx ) = u(\bfitx D

i ) = uD
i \forall \bfitx \in Vi, i = 1, . . . , ND\} ,(2.1)

HV := \{ u(\bfitx )
\bigm| \bigm| u(\bfitx ) = u(\bfitx V

k ) = uV
k \forall \bfitx \in Dk, k = 1, . . . , NV \} .(2.2)

Vector functions are approximated on the Delaunay mesh with vector grid functions,
where the function space is denoted by \bfitH \bfitD . For vector function \bfitu (\bfitx ), we project it
along the Delaunay edge and evaluate at the intersection of the Delaunay edges and
Voronoi face. The space of vector grid functions on the Voronoi mesh, \bfitH \bfitV , is defined
analogously on the Voronoi mesh:

\bfitH \bfitD := \{ \bfitu (\bfitx )
\bigm| \bigm| \bfitu (\bfitx ) = \bfitu \cdot \bfitt Dij(\bfitx D

ij) = uD
ij , \bfitx D

ij = \bfite Dij \cap \partial Vij\} ,(2.3)

\bfitH \bfitV := \{ \bfitu (\bfitx )
\bigm| \bigm| \bfitu (\bfitx ) = \bfitu \cdot \bfitt Vkm(\bfitx V

km) = uV
km, \bfitx V

km = \bfite Vkm \cap \partial Dkm\} .(2.4)

To build intuition, we first introduce the MFD operators componentwise and then
later give the matrix definitions. In the continuous setting, the gradient maps scalar
functions to vector functions. Analogously, the discrete gradient on the Delaunay
mesh maps a scalar grid function defined on the nodes to a vector grid function
defined on the edges, or gradDu : HD \rightarrow \bfitH \bfitD . On edge \bfite Dij ,

(gradDu)Dij =
uD
j  - uD

i

| \bfite Dij | 
\eta (i, j),

where \eta is an orientation constant,

\eta (i, j) =

\Biggl\{ 
1, j > i,

 - 1 otherwise.

Similarly, the gradient on the Voronoi mesh, gradV u : HV \rightarrow \bfitH \bfitV , is given by

(gradV u)
V
km =

uV
m  - uV

k

| \bfite Vkm| 
\eta (k,m).
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\bfitx D
1 \bfitx D

2

\bfitx D
5

\bfitx D
7\bfitx D

6

\bfitx D
4 \bfitx D

3

\bfitx D
8

\bfitx D
10

\bfitx D
9

\bfitx V
3

\bfitx V
2

\bfitx V
1

\bfitx V
10

\bfitx V
9

\bfitx V
8

\bfitx V
5

\bfitx V
6

\bfitx V
4

\bfitx V
7

\bfitx D
1

\bfitx D
4 \bfitx D

3

\bfite D14 \bfite D13

\bfite D34

\bfitx V
2

\bfitx D
2

\bfitx V
3

\bfitx V
8

\bfitx V
5

\bfitx V
6

\bfitx V
4

\bfitx V
7

\bfite V78

\bfite V34

\bfite V67

\bfite V45

\bfite V38 \bfite V56

Fig. 1. Top: Two-dimensional primal Delaunay mesh in black solid lines with corresponding
dual Voronoi mesh in red dashed lines. Bottom left: Zoom in of Delaunay element D2, corresponding
to Voronoi node \bfitx V

2 , with labeled Delaunay edges and nodes. Bottom right: Zoom in of Voronoi
element V2, corresponding to Delaunay node \bfitx D

2 , with labeled Voronoi nodes and edges.

To define the discrete divergence, first note that divergence maps vector functions to
scalar functions. This differential operator on the Delaunay grid, divDu : \bfitH \bfitD \rightarrow HD,
corresponding to the outward flux of Vi is defined as

(divDu)Di =
1

| Vi| 
\sum 

j\in \scrN V
i

| \partial Vij | uD
ij(\bfitn 

V
ij \cdot \bfitt Dij).

Similarly, on the Voronoi grid, the divergence divV u : \bfitH \bfitV \rightarrow HV is

(divV u)
V
k =

1

| Dk| 
\sum 

m\in \scrN D
k

| \partial Dkm| uV
km(\bfitn D

km \cdot \bfitt Vkm).
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FE FRAMEWORK OF MFD FOR MAXWELL A2643

The discrete curl operator maps from edges on one mesh (the circulation) to edges
on the other mesh (the axis of rotation) by the geometric relationships between the
dual meshes. Therefore, the Delaunay curl operator maps vector grid functions on the
Delaunay mesh to a vector grid function on the Voronoi mesh, curlDu : \bfitH \bfitD \rightarrow \bfitH \bfitV ,
and is given by

(curlDu)Vkm =
(\bfitt Vkm \cdot \bfitn D

km)

| \partial Dkm| 
\sum 

\bfite D
ij\in \partial Dkm

uD
ij | \bfite Dij | \chi (\bfitn D

km, \bfitt Dij),

where the constant \chi essentially enforces the right-hand rule,

\chi (\bfitn D
km, \bfitt Dij) =

\Biggl\{ 
1, \bfitt Dij positively oriented,

 - 1 otherwise.

Similarly, we define the Voronoi curl operator curlV u : \bfitH \bfitV \rightarrow \bfitH \bfitD ,

(curlV u)
D
ij =

(\bfitt Dij \cdot \bfitn V
ij)

| \partial Vij | 
\sum 

\bfite V
km\in \partial Vij

uV
km | \bfite Vkm| \chi (\bfitn V

ij , \bfitt 
V
km).

To define the MFD operators in matrix form, we introduce the edge-vertex signed
incidence matrix, \scrG \in \BbbR MD\times ND , and the face-edge signed incidence matrix, \scrK \in 
\BbbR MV \times MD . Both are defined on the Delaunay triangulation, where ND, MV , and
MD denote the number of Delaunay nodes, Voronoi edges, and Delaunay edges, re-
spectively. Similarly, on the Voronoi mesh, we have the signed incidence matrix
\scrG V \in \BbbR MV \times NV , where NV denotes the number of nodes on the Voronoi mesh. The
nonzero entries of \scrG , \scrG V , and \scrK are either 1 or  - 1, and the signs are consistent with
the predetermined orientation of the edges and faces. Additionally, we introduce the
following diagonal matrices encoding the mesh information pertaining to MFD:

\scrD \bfite D = diag
\bigl( 
| \bfite Dij | 

\bigr) 
, \scrD \partial D = diag (| \partial Dkm| ), \scrD D = diag (| Dk| ),

\scrD \bfite V = diag
\bigl( 
| \bfite Vkm| 

\bigr) 
, \scrD \partial V = diag (| \partial Vij | ), \scrD V = diag (| Vi| ).

The matrix representations are derived from the componentwise definitions using the
incidence matrices as the actions of the operators and the diagonal matrices for the
appropriate scaling. Thus,

gradD := \scrD  - 1
\bfite D\scrG , divD := \scrD  - 1

V \scrG T\scrD \partial V , curlD := \scrD  - 1
\partial D\scrK \scrD \bfite D ,(2.5)

gradV := \scrD  - 1
\bfite V \scrG V , divV := \scrD  - 1

D \scrG T
V \scrD \partial D, curlV := \scrD  - 1

\partial V \scrK 
T\scrD \bfite V .(2.6)

With this construction, it is known that the mimetic operators are structure-
preserving, i.e., curlDgradD = 0, curlV gradV = 0, divV curlD = 0, and divDcurlV = 0
[8, 31]. Using these relationships, two exact sequences exist for MFD,

HD
gradD -  -  -  - \rightarrow \bfitH \bfitD 

curlD -  -  - \rightarrow \bfitH \bfitV 
divV -  -  - \rightarrow HV ,(2.7)

HV
gradV -  -  -  - \rightarrow \bfitH \bfitV 

curlV -  -  - \rightarrow \bfitH \bfitD 
divD -  -  - \rightarrow HD.(2.8)

Note again that the nature of the discretization method, when used for Maxwell's
system, enforces the PDE constraints strongly at the discrete level.
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2.2. MFD for Maxwell's equations. Since the energy conservation property
is important in electromagnetic applications, we consider the Crank--Nicolson scheme
(a symplectic time integrator) with time step \tau and suitable initial conditions given by
appropriate interpolation to the dual meshes, p0D, \bfitE 0

D, and \bfitB 0
V . The fully discretized

system becomes the following: find pnD \in HD, \bfitE n
D \in \bfitH \bfitD , and \bfitB n

V \in \bfitH \bfitV such that

2

\tau 
\bfitB n

V + curlD \bfitE n
D = \bfitg V

\bfitB ,(2.9)

2

\tau 
\bfitE n

D  - curlV \bfitB n
V + gradD pnD = \bfitg D

\bfitE ,(2.10)

2

\tau 
pnD + divD \bfitE n

D = gDp ,(2.11)

where the functions on the right-hand sides are given by

\bfitg V
\bfitB :=

2

\tau 
\bfitB n - 1

V  - curlD \bfitE n - 1
D ,

\bfitg D
\bfitE :=

2

\tau 
\bfitE n - 1

D + curlV \bfitB n - 1
V  - gradD pn - 1

D  - (\bfitj nD + \bfitj n - 1
D ),

gDp :=
2

\tau 
pn - 1
D  - divD \bfitE n - 1

D .

The current density, \bfitj D \in \bfitH \bfitD , is (\bfitj D)
D
ij = | \partial V D

ij |  - 1
\int 
\partial Vij

\bfitj \cdot \bfitn V
ij d\bfitx .

Remark 2.1. Recall that p(\bfitx , t) = 0 for all \bfitx \in \Omega and t \geq 0 with initial condition
p(\bfitx , 0) = 0. Therefore, (2.9)--(2.11) could be solved without including p, and the
analysis that follows remains the same even without p. However, p is included to
demonstrate the relationship between the grad, curl, and div spaces, which are chosen
such that the equations obey the mappings given by the sequences (2.7)--(2.8). Also,
note that we could have put \bfitE and p on the Voronoi mesh, and \bfitB on the Delaunay
mesh instead of the choice above. However, putting the magnetic field on the Voronoi
mesh, \bfitB V \in \bfitH \bfitV , guarantees divV \bfitB V = 0. Thus, the divergence of the magnetic
field is constant zero on the Voronoi nodes, which gives us a divergence-free magnetic
field on all Delaunay tetrahedra.

Using the definitions of the MFD operators, the linear system for the MFD scheme
(2.9)--(2.11) is given by

(2.12)

\left[   
2
\tau \scrI \bfite V \scrD  - 1

\partial D \scrK \scrD \bfite D

 - \scrD  - 1
\partial V \scrK T \scrD \bfite V

2
\tau \scrI \bfite D \scrD  - 1

\bfite D \scrG 
 - \scrD  - 1

V \scrG T \scrD \partial V
2
\tau \scrI V

\right]   
\underbrace{}  \underbrace{}  

=:\scrA MFD

\left[   \bfitB n
V

\bfitE n
D

pnD

\right]   =

\left[   \bfitg V
\bfitB 

\bfitg D
\bfitE 

gDp

\right]   .

3. Finite-element framework. Next, we consider a structure-preserving mixed
FEM for the Maxwell system [4]. To approximate the inner-product terms on the
computational domain, we implement mass lumping, which results in diagonal mass
matrices. This gives us FE blocks in terms of MFD mesh information, which is useful
when drawing connections in the next section.

Consider the differential operator, \frakD , and Sobolev space,

H(\frakD ) := \{ u \in L2(\Omega ),\frakD u \in L2(\Omega )\} ,
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FE FRAMEWORK OF MFD FOR MAXWELL A2645

where \frakD is grad, curl, or div. Let \| \cdot \| and \langle \cdot , \cdot \rangle denote the L2 norm and inner product,
respectively. Define the finite-dimensional function spaces with appropriate boundary
conditions, Hh,0(\frakD ). For the magnetic field, \bfitB h \in \bfitH h,0(div), we use the Raviart--
Thomas (RT) element, the N\'ed\'elec element for the electric field \bfitE h \in \bfitH h,0(curl),
and the Lagrange element for the auxiliary pressure ph \in Hh,0(grad). Defining \bfitV h :=
\bfitH h,0(div)\times \bfitH h,0(curl)\times Hh,0(grad), the FEM discretization for Maxwell's equations
becomes the following: find (\bfitB n

h ,\bfitE 
n
h , p

n
h) \in \bfitV h such that for all (\bfitC h,\bfitF h, qh) \in \bfitV h,

2

\tau 
\langle \bfitB n

h ,\bfitC h\rangle + \langle \nabla \times \bfitE n
h ,\bfitC h\rangle = (\bfitg \bfitB ,\bfitC h),(3.1)

2

\tau 
\langle \bfitE n

h ,\bfitF h\rangle  - \langle \bfitB n
h ,\nabla \times \bfitF h\rangle + \langle \nabla pnh,\bfitF h\rangle = (\bfitg \bfitE ,\bfitF h),(3.2)

2

\tau 
\langle pnh, qh\rangle  - \langle \bfitE n

h ,\nabla qh\rangle = (gp, qh),(3.3)

where the functionals on the right-hand side are given by

(\bfitg \bfitB ,\bfitC h) =
2

\tau 
\langle \bfitB n - 1

h ,\bfitC h\rangle  - \langle \nabla \times \bfitE n - 1
h ,\bfitC h\rangle ,

(\bfitg \bfitE ,\bfitF h) =
2

\tau 
\langle \bfitE n - 1

h ,\bfitF h\rangle  - \langle \nabla pn - 1
h ,\bfitF h\rangle + \langle \bfitB n - 1

h ,\nabla \times \bfitF h\rangle  - \langle \bfitj n + \bfitj n - 1,\bfitF h\rangle ,

(gp, qh) =
2

\tau 
\langle pn - 1

h , qh\rangle + \langle \bfitE n - 1
h ,\nabla qh\rangle .

To write this as a linear system, we introduce discrete gradient and curl opera-
tors. Let \{ \phi grad

i \} , \{ \bfitphi curl
i \} , and \{ \bfitphi div

i \} be the bases of Hh,0(grad), \bfitH h,0(curl), and
\bfitH h,0(div), respectively. Let \{ \bfiteta curl

i \} be the degrees of freedom for the N\'ed\'elec space
and \{ \bfiteta div

i \} for the RT space. Then define the FE discrete gradient, \scrG FE , and curl,
\scrK FE , in terms of the degrees of freedom,

\scrG FE
ij := \bfiteta curl

i

\Bigl( 
\nabla \phi grad

j

\Bigr) 
=

1

| ei| 

\int 
ei

\nabla \phi grad
j \cdot \bfitt i ds,(3.4)

\scrK FE
ij := \bfiteta div

i

\bigl( 
\nabla \times \bfitphi curl

j

\bigr) 
=

1

| fi| 

\int 
fi

\nabla \times \bfitphi curl
j \cdot \bfitn i dS.(3.5)

Note that the degrees of freedom are scaled by mesh data, the curl degrees of freedom
are scaled by inverse edge lengths, and div degrees of freedom are scaled by inverse
face areas. Thus, the FE linear system for (3.1)--(3.3) is given by

(3.6)

\left[   
2
\tau \scrM \bfitB \scrM \bfitB \scrK FE

 - 
\bigl( 
\scrK FE

\bigr) T \scrM \bfitB 
2
\tau \scrM \bfitE \scrM \bfitE \scrG FE

 - 
\bigl( 
\scrG FE

\bigr) T \scrM \bfitE 
2
\tau \scrM p

\right]   
\underbrace{}  \underbrace{}  

=:\scrA FE

\left[   \bfitB n
h

\bfitE n
h

pnh

\right]   =

\left[   \bfitg \bfitB \bfitg \bfitE 
gp

\right]   ,

with mass matrices given by (\scrM p)ij = \langle \phi grad
j , \phi grad

i \rangle , (\scrM \bfitE )ij = \langle \bfitphi curl
j ,\bfitphi curl

i \rangle , and
(\scrM \bfitB )ij = \langle \bfitphi div

j ,\bfitphi div
i \rangle .

3.1. Mass lumping. Now that we have linear systems for two discretization
methods, our goal is to draw similarities between (2.12) and (3.6). Notice that the
discrete differential operators are already in the same blocks; however, the MFD
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A2646 ADLER ET AL.

system has blocks with diagonal entries containing mesh information while the FEM
system has mass matrices. Using ideas from [6, 7, 13, 30] to approximate the mass ma-
trices with diagonal matrices, we implement mass-lumping schemes. The quadrature
schemes associated with the lumping result in a quantity that has physical signifi-
cance, namely a volume unit for three-dimensional meshes and an area on the mesh
for the two-dimensional case. Therefore, we expect that mass lumping gives diagonal
matrices where the diagonal represents some sort of volume (three-dimensional) or
area (two-dimensional) in the dual mesh setup. We see in the next section that this
is true for appropriate choices of quadrature weights and that these specific lumped
matrices help draw more connections between the FE and MFD systems.

First, consider the Lagrange element mass matrix, \scrM p. For simplicity, assume
we have a regular primal (Delaunay) mesh for the FE grid and an associated dual
(Voronoi) mesh. The entries of \scrM p are integrals of the Lagrange basis functions but
can be rewritten in terms of a quadrature rule,

(\scrM p)ij = \langle \phi grad
i , \phi grad

j \rangle =
NV\sum 
l=1

\int 
Dl

\phi grad
i \phi grad

j d\bfitx \approx 
NV\sum 
l=1

d+1\sum 
k=1

\omega lk \phi grad
i (xlk)\phi 

grad
j (xlk),

where d is the dimension, the sum in l is over all of the elements, d+1 is the number of
nodes per element, and \omega lk and xlk are the quadrature weights and nodes, respectively.
Typically, Gaussian quadrature is used, but we manufacture a new rule such that the
choice of nodes and weights gives the approximation, \scrM p \approx \scrD V .

\bfitx D
1

\bfitx D
2\bfitx D

5

\bfitx D
7\bfitx D

6

\bfitx D
4 \bfitx D

3

\bfitx V
1

\bfitx V
2

\bfitx V
3

\bfitx V
4

\bfitx V
5

\bfitx V
6

Fig. 2. Two-dimensional subset of regular dual mesh (as in Figure 1). Delaunay mesh in black
solid lines and Voronoi mesh in red dashed line.

To illustrate this further, examine a subset of a regular dual mesh setup in two
dimensions, shown in Figure 2. On the submesh, we choose the quadrature points
xlk to be the Delaunay nodes, \bfitx D

m, and then determine what the appropriate weights
should be. Consider two cases: i = j and i \not = j. When i \not = j, we have that all terms
in the sum are zero, as \phi grad

i (\bfitx D
n ) = 0 if i \not = n and \phi grad

j (\bfitx D
n ) = 0 if j \not = n by the

definition of the FE basis functions and degrees of freedom. The only way to get a
nonzero term in the sum is if i = j = n. When i = j, note that each term in the sum
is only nonzero when xlk = \bfitx D

i . Consider the small mesh in Figure 2 and the case
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FE FRAMEWORK OF MFD FOR MAXWELL A2647

when i = j = 1. Define the element enumeration using MFD notation; i.e., let D1 be
the Delaunay element defined by Voronoi node \bfitx V

1 , and let Dl be defined by \bfitx V
l . Let

k enumerate the nodes in an element in increasing order. For example, for l = 1, we
have x11 = \bfitx D

1 , x12 = \bfitx D
2 , and x13 = \bfitx D

3 in Figure 2. The quadrature rule on this
submesh becomes

NV\sum 
l=1

d+1\sum 
k=1

\omega lk \phi grad
1 (xlk)\phi 

grad
1 (xlk) = \omega 11\phi 

grad
1 (x11)\phi 

grad
1 (x11) + \omega 21\phi 

grad
1 (x21)\phi 

grad
1 (x21)

+ \omega 31\phi 
grad
1 (x31)\phi 

grad
1 (x31) + \omega 41\phi 

grad
1 (x41)\phi 

grad
1 (x41)

+ \omega 51\phi 
grad
1 (x51)\phi 

grad
1 (x51) + \omega 61\phi 

grad
1 (x61)\phi 

grad
1 (x61)

= \omega 11 + \omega 21 + \omega 31 + \omega 41 + \omega 51 + \omega 61.

To get the correct approximation by mass lumping, this sum must equal | V1| ,
the area of the Voronoi cell defined by the six Voronoi nodes. Therefore, we choose
\omega 11 = | V1 \cap D1| , \omega 21 = | V1 \cap D2| , . . . , \omega 61 = | V1 \cap D6| . Substituting in the weights we
see that

NV\sum 
l=1

d+1\sum 
k=1

\omega lk \phi grad
1 (xlk)\phi 

grad
1 (xlk) = \omega 11 + \omega 21 + \omega 31 + \omega 41 + \omega 51 + \omega 61

= | V1 \cap D1| + | V1 \cap D2| + \cdot \cdot \cdot + | V1 \cap D6| 
= | V1| .

The same argument can be applied more generally to the i = j case, where we want
\omega lk = | Dl \cap Vi| when xlk = \bfitx D

i . This gives us the approximation (\scrM p)ii \approx | Vi| . The
same idea applies to the three-dimensional case, except we have four nodes in each
element and the weights represent a volume instead of an area.

In general, for the Lagrange elements with mass matrix \scrM p, we use the following
quadrature rule to lump the entries onto the diagonal. Summing over elements and
nodes per element, we have for scalar functions u, v \in H(grad),

\langle u, v\rangle \widetilde \scrM p
:=

NV\sum 
l=1

d+1\sum 
k=1

\omega grad
lk u(xlk)v(xlk), \| u\| 2\widetilde \scrM p

:= \langle u, u\rangle \widetilde \scrM p
,

where the xlk are given by the nodes of the Delaunay mesh, and \omega grad
lk = | Dl\cap Vi| when

xlk = \bfitx D
i . Thus, we have that \scrM p \approx \widetilde \scrM p = \scrD V , which is the standard mass-lumping

scheme for H(grad) [30].
Similarly for the RT elements, we introduce the following inner product, summing

over elements and faces per element, for \bfitu ,\bfitv \in \bfitH (div):

\langle \bfitu ,\bfitv \rangle \widetilde \scrM \bfitB 
:=

NV\sum 
l=1

d+1\sum 
k=1

\omega div
lk

\biggl( 
1

flk

\int 
flk

\bfitu \cdot \^\bfitn dS

\biggr) \biggl( 
1

flk

\int 
flk

\bfitv \cdot \^\bfitn dS

\biggr) 
,

\| \bfitu \| 2\widetilde \scrM \bfitB 
:= \langle \bfitu ,\bfitu \rangle \widetilde \scrM \bfitB 

.

Using the same idea as the previous lumping scheme and following [7], we choose quad-
rature weights to be \omega div

lk =
\bigm| \bigm| \bfite Vlm \cap Dl

\bigm| \bigm| | \partial Dlm| when flk = \partial Dlm, where \partial Dlm is the
ith face in the Delaunay mesh enumeration. Then the mass matrix is approximated
by \scrM \bfitB \approx \widetilde \scrM \bfitB = \scrD \partial D\scrD \bfite V .
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A2648 ADLER ET AL.

Finally, we examine the N\'ed\'elec element mass matrix, \scrM \bfitE , by following [6]. We
have the entries computed with the following quadrature rule: for \bfitu ,\bfitv \in \bfitH (curl),

\langle \bfitu ,\bfitv \rangle \widetilde \scrM \bfitE 
:=

ND\sum 
l=1

d(d+1)
2\sum 

k=1

\omega curl
lk

\biggl( 
1

elk

\int 
elk

\bfitu \cdot \^\bfitt ds
\biggr) \biggl( 

1

elk

\int 
elk

\bfitv \cdot \^\bfitt ds
\biggr) 
,

\| \bfitu \| 2\widetilde \scrM \bfitE 
:= \langle \bfitu ,\bfitu \rangle \widetilde \scrM \bfitE 

,

where edge elk = \bfite Dmn is the ith edge in the Delaunay mesh enumeration, and
elk = \bfite Dmn is contained in Delaunay tetrahedron Dl. Choosing weights to be \omega curl

lk =

| \partial Vmn \cap Dl| 
\bigm| \bigm| \bfite Dmn

\bigm| \bigm| yields \scrM \bfitE \approx \widetilde \scrM \bfitE = \scrD \partial V \scrD \bfite D .

Remark 3.1. The mass-lumping schemes can be modified for nonconstant \epsilon (\bfitx )
and \mu (\bfitx ) by taking a constant approximation of the coefficients on each element.
With the piecewise constant approximation, the quadrature weights and sparsity of
the mass-lumping schemes are unchanged.

Putting this all together, we have the mass-lumped FE system as

(3.7)

\left[   
2
\tau 
\widetilde \scrM \bfitB 

\widetilde \scrM \bfitB \scrK FE

 - 
\bigl( 
\scrK FE

\bigr) T \widetilde \scrM \bfitB 
2
\tau 
\widetilde \scrM \bfitE 

\widetilde \scrM \bfitE \scrG FE

 - 
\bigl( 
\scrG FE

\bigr) T \widetilde \scrM \bfitE 
2
\tau 
\widetilde \scrM p

\right]   
\underbrace{}  \underbrace{}  

=: \widetilde \scrA FE

\left[   \bfitB n
h

\bfitE n
h

pnh

\right]   =

\left[   \bfitg \bfitB \bfitg \bfitE 
gp

\right]   .

4. Connections between MFD and FEM. To study the well-posedness of the
mimetic discretization (2.9)--(2.11) and design efficient solvers for the resulting linear
system, we draw connections to the FE scheme, noting that with mass lumping, the
two systems have the same block structure. First, we rewrite the FE gradient and
curl operators in terms of the MFD incidence matrices as follows:

\scrG FE = \scrD  - 1
\bfite D\scrG , \scrK FE = \scrD  - 1

\partial D\scrK \scrD \bfite D ,(4.1)

where we scale incident matrices on the mesh to be consistent with the definitions in
(3.4)--(3.5). Applying a left scaling to the mass-lumping schemes, and substituting in
(4.1) to (3.7), gives a new scaled FE linear system,

\left[   \scrD 
 - 1
\partial D\scrD  - 1

\bfite V

\scrD  - 1
\partial V \scrD 

 - 1
\bfite D

\scrD  - 1
V

\right]   \widetilde \scrA FE

\underbrace{}  \underbrace{}  
=:\scrA SFE

\left[   \bfitB n
h

\bfitE n
h

pnh

\right]   =

\left[   \scrD 
 - 1
\partial D\scrD  - 1

\bfite V

\scrD  - 1
\partial V \scrD 

 - 1
\bfite D

\scrD  - 1
V

\right]   
\left[   \bfitg \bfitB \bfitg \bfitE 
gp

\right]   .

(4.2)

Substituting in \widetilde \scrM p = DV , \widetilde \scrM \bfitB = \scrD \partial D\scrD \bfite V , and \widetilde \scrM \bfitE = \scrD \partial V \scrD \bfite D , we get \scrA SFE =
\scrA MFD and recover exactly the MFD system in (2.12).

With the above equivalence, we apply an FE well-posedness proof to the mass-
lumped FE system, thus obtaining the well-posedness of the mimetic system. For
simplicity in dealing with the scaled system, we also introduce the function space,\widetilde \bfitV h := \widetilde \bfitH h,0(div)\times \widetilde \bfitH h,0(curl)\times \widetilde Hh,0(grad), which is \bfitV h with basis functions scaled
to reflect the left scaling in (4.2):
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FE FRAMEWORK OF MFD FOR MAXWELL A2649

\widetilde \bfitH h,0(div) = span\{ \widetilde \bfitphi div
i \} , where \widetilde \bfitphi div

i =
\bigl( 
\scrD  - 1

\partial D\scrD  - 1
eV

\bigr) 
ii
\bfitphi div

i ;\widetilde \bfitH h,0(curl) = span\{ \widetilde \bfitphi curl
i \} , where \widetilde \bfitphi curl

i =
\bigl( 
\scrD  - 1

\partial V \scrD 
 - 1
\bfite D

\bigr) 
ii
\bfitphi curl

i ;\widetilde Hh,0(grad) = span\{ \widetilde \phi grad
i \} , where \widetilde \phi grad

i =
\bigl( 
\scrD  - 1

V

\bigr) 
ii
\phi grad
i .

Now (4.2), and thus the MFD Maxwell system (2.12), can be written in variational
form (for simplicity, the subscripts indicating the time-step iteration and inclusion in

the FE space are excluded) as follows: find (\bfitB ,\bfitE , p) \in \bfitV h such that for all ( \widetilde \bfitC , \widetilde \bfitF , \widetilde q) \in \widetilde \bfitV h,

2

\tau 
\langle \bfitB , \widetilde \bfitC \rangle \widetilde \scrM \bfitB 

+ \langle \nabla \times \bfitE , \widetilde \bfitC \rangle \widetilde \scrM \bfitB 
= (\bfitg \bfitB , \widetilde \bfitC ),(4.3)

 - \langle \bfitB ,\nabla \times \widetilde \bfitF \rangle \widetilde \scrM \bfitB 
+

2

\tau 
\langle \bfitE , \widetilde \bfitF \rangle \widetilde \scrM \bfitE 

+ \langle \nabla p, \widetilde \bfitF \rangle \widetilde \scrM \bfitE 
= (\bfitg \bfitE , \widetilde \bfitF ),(4.4)

 - \langle \bfitE ,\nabla \widetilde q\rangle \widetilde \scrM \bfitE 
+

2

\tau 
\langle p, \widetilde q\rangle \widetilde \scrM p

= (gp, \widetilde q).(4.5)

Note that MFD in this case can be considered as a Petrov--Galerkin FEM.
Following the notation in [2], we introduce the bilinear form

a(\bfitB ,\bfitE , p; \widetilde \bfitC , \widetilde \bfitF , \widetilde q) :=
2

\tau 
\langle \bfitB , \widetilde \bfitC \rangle \widetilde \scrM \bfitB 

+ \langle \nabla \times \bfitE , \widetilde \bfitC \rangle \widetilde \scrM \bfitB 
 - \langle \bfitB ,\nabla \times \widetilde \bfitF \rangle \widetilde \scrM \bfitB 

(4.6)

+
2

\tau 
\langle \bfitE , \widetilde \bfitF \rangle \widetilde \scrM \bfitE 

+ \langle \nabla p, \widetilde \bfitF \rangle \widetilde \scrM \bfitB 
 - \langle \bfitE ,\nabla \widetilde q\rangle \widetilde \scrM \bfitE 

+
2

\tau 
\langle p, \widetilde q\rangle \widetilde \scrM p

and the weighted norms

\| \bfitB \| 2div :=
2

\tau 
\| \bfitB \| 2\widetilde \scrM \bfitB 

+ \| \nabla \cdot \bfitB \| 2,(4.7)

\| \bfitE \| 2curl :=
2

\tau 
\| \bfitE \| 2\widetilde \scrM \bfitE 

+
\tau 

2
\| \nabla \times \bfitE \| 2\widetilde \scrM \bfitB 

,(4.8)

\| p\| 2grad :=
2

\tau 
\| p\| 2\widetilde \scrM p

+
\tau 

2
\| \nabla p\| 2\widetilde \scrM \bfitE 

,(4.9)

| | | (\bfitB ,\bfitE , p) | | | 2 := \| \bfitB \| 2div + \| \bfitE \| 2curl + \| p\| 2grad.(4.10)

The following theorem shows that (4.3)--(4.5) is well-posed, and therefore (2.9)--(2.11)
is well-posed.

Theorem 4.1. If \bfitg \bfitB \in (\bfitH h,0(div))
\prime 
, the MFD system (4.3)--(4.5) is well-posed;

namely, it satisfies the inf-sup condition,

(4.11) sup
( \widetilde \bfitC , \widetilde \bfitF ,\widetilde q)\in \widetilde \bfitV \bfith 

( \widetilde \bfitC , \widetilde \bfitF ,\widetilde q)\not =\bfzero 

a(\bfitB ,\bfitE , p; \widetilde \bfitC , \widetilde \bfitF , \widetilde q)
| | | ( \widetilde \bfitC , \widetilde \bfitF , \widetilde q )| | | \geq 1

4
| | | (\bfitB ,\bfitE , p) | | | ,

and is bounded:

(4.12) a(\bfitB ,\bfitE , p; \widetilde \bfitC , \widetilde \bfitF , \widetilde q) \leq C| | | \bfitB ,\bfitE , p| | | | | | ( \widetilde \bfitC , \widetilde \bfitF , \widetilde q )| | | .
Proof. Consider a variation of (4.6), where the term \langle \nabla \cdot \bfitB ,\nabla \cdot \widetilde \bfitC \rangle is added:

\^a(\bfitB ,\bfitE , p; \widetilde \bfitC , \widetilde \bfitF , \widetilde q) := a(\bfitB ,\bfitE , p; \widetilde \bfitC , \widetilde \bfitF , \widetilde q) + \langle \nabla \cdot \bfitB ,\nabla \cdot \widetilde \bfitC \rangle .(4.13)
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A2650 ADLER ET AL.

Since \nabla \cdot \bfitB = 0 for all t \geq 0, (4.6) and (4.13) are equivalent. We proceed by showing
that (4.13) satisfies the inf-sup condition,

(4.14) sup
\bfzero \not =( \widetilde \bfitC , \widetilde \bfitF ,\widetilde q)\in \widetilde \bfitV \bfith 

\^a(\bfitB ,\bfitE , p; \widetilde \bfitC , \widetilde \bfitF , \widetilde q)
| | | ( \widetilde \bfitC , \widetilde \bfitF , \widetilde q )| | | \geq 1

4
| | | (\bfitB ,\bfitE , p)| | | ,

and is bounded:

(4.15) \^a(\bfitB ,\bfitE , p; \widetilde \bfitC , \widetilde \bfitF , \widetilde q) \leq C| | | (\bfitB ,\bfitE , p)| | | | | | ( \widetilde \bfitC , \widetilde \bfitF , \widetilde q )| | | .
Let \widetilde \bfitC = \bfitB + \tau 

2\nabla \times \bfitE , \widetilde \bfitF = \bfitE + \tau 
2\nabla p, and \widetilde q = p. Substituting into the bilinear form

(4.13), using the fact that \nabla \cdot \nabla \times \bfitE = 0 and \nabla \times \nabla p = 0, and simplifying, we have

\^a(\bfitB ,\bfitE , p; \widetilde \bfitC , \widetilde \bfitF , \widetilde q) = 2

\tau 
\| \bfitB \| 2\widetilde \scrM \bfitB 

+ \| \nabla \cdot \bfitB \| 2 + 2

\tau 
\| \bfitE \| 2\widetilde \scrM \bfitE 

+
\tau 

2
\| \nabla \times \bfitE \| 2\widetilde \scrM \bfitB 

+
2

\tau 
\| p\| 2\widetilde \scrM p

+
\tau 

2
\| \nabla p\| 2\widetilde \scrM \bfitE 

+ \langle \nabla \times \bfitE ,\bfitB \rangle \widetilde \scrM \bfitB 
+ \langle \nabla p,\bfitE \rangle \widetilde \scrM \bfitE 

.

Using Young's inequality to bound the cross terms, it follows that

\^a(\bfitB ,\bfitE , p; \widetilde \bfitC , \widetilde \bfitF , \widetilde q) \geq 2

\tau 
\| \bfitB \| 2\widetilde \scrM \bfitB 

+ \| \nabla \cdot \bfitB \| 2 + 2

\tau 
\| \bfitE \| 2\widetilde \scrM \bfitE 

+
\tau 

2
\| \nabla \times \bfitE \| 2\widetilde \scrM \bfitB 

+
2

\tau 
\| p\| 2\widetilde \scrM p

+
\tau 

2
\| \nabla p\| 2\widetilde \scrM \bfitE 

 - \tau 

4
\| \nabla \times \bfitE \| 2\widetilde \scrM \bfitB 

 - 1

\tau 
\| \bfitB \| 2\widetilde \scrM \bfitB 

 - 1

\tau 
\| \bfitE \| 2\widetilde \scrM \bfitE 

 - \tau 

4
\| \nabla p\| 2\widetilde \scrM \bfitE 

=
1

\tau 
\| \bfitB \| 2\widetilde \scrM \bfitB 

+ \| \nabla \cdot \bfitB \| 2 + 1

\tau 
\| \bfitE \| 2\widetilde \scrM \bfitE 

+
\tau 

4
\| \nabla \times \bfitE \| 2\widetilde \scrM \bfitB 

+
2

\tau 
\| p\| 2\widetilde \scrM p

+
\tau 

4
\| \nabla p\| 2\widetilde \scrM \bfitE 

\geq 1

2
| | | (\bfitB ,\bfitE , p)| | | 2.

Next, bound the norms of the test functions using the triangle inequality and Young's
inequality:

| | | ( \widetilde \bfitC , \widetilde \bfitF , \widetilde q )| | | 2 = \| \bfitB +
\tau 

2
\nabla \times \bfitE \| 2div + \| \bfitE +

\tau 

2
\nabla p\| 2curl + \| p\| 2grad

\leq \| \bfitB \| 2div +
\tau 2

4
\| \nabla \times \bfitE \| 2div + \tau \| \bfitB \| div\| \nabla \times \bfitE \| div

+ \| \bfitE \| 2curl +
\tau 2

4
\| \nabla p\| 2curl + \tau \| \bfitE \| curl\| \nabla p\| curl + \| p\| 2grad

\leq \| \bfitB \| 2div +
\tau 2

4
\| \nabla \times \bfitE \| 2div + \| \bfitB \| 2div +

\tau 2

4
\| \nabla \times \bfitE \| 2div

+ \| \bfitE \| 2curl +
\tau 2

4
\| \nabla p\| 2curl + \| \bfitE \| 2curl +

\tau 2

4
\| \nabla p\| 2curl + \| p\| 2grad

\leq 4| | | (\bfitB ,\bfitE , p)| | | .

Weak coercivity, (4.14), follows directly. To show boundedness, (4.15), apply Cauchy--
Schwarz twice to (4.13). The well-posedness of bilinear form \^a defined in (4.13) follows
directly from Babu\v ska--Brezzi theory. Since \^a, (4.13), and the original bilinear form
a, (4.6), are equivalent, the scaled, mass-lumped FE system, which is equivalent to
the MFD system, (4.3)--(4.5), is well-posed (arguments similar to those in Lemma 1
and Theorem 8 of [18] give the result). This implies that (4.6) satisfies (4.11)--(4.12),
which completes the proof.
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5. Block preconditioners based on exact block factorization. One of the
benefits of drawing connections between MFD and FEM, in addition to the ability to
show well-posedness of the MFD discretization, is that robust linear solvers developed
for FEM [9, 10, 23, 24, 25] can now be applied to the MFD system. In this work,
we extend the ideas from [2, 24] to the MFD system and develop robust precondi-
tioners based on block factorization, exploiting the structure-preserving nature of the
discretization.

Good block preconditioners are often based on Schur complements and their ap-
proximations, and the accuracy of the approximations greatly influences the perfor-
mance of the preconditioner. However, the structure-preserving discretization allows
for Schur complements to be computed exactly, and the exact sequence of the discrete
spaces yields sparse Schur complements that are used directly without approximation.

To more clearly exploit the structure-preserving nature of the MFD discretization,
we rewrite the blocks of (2.12) back in the MFD operator notation given by (2.5)--(2.6),

(5.1) \scrA MFD \bfitx = \bfitb \Leftarrow \Rightarrow 

\left[   
2
\tau \scrI \bfite V curlD

 - curlV
2
\tau \scrI \bfite D gradD
 - divD

2
\tau \scrI V

\right]   
\left[   \bfitB n

V

\bfitE n
D

pnD

\right]   =

\left[   \bfitg V
\bfitB 

\bfitg D
\bfitE 

gDp

\right]   .

Recall that the structure-preserving discretization enforces the properties of the gra-
dient, curl, and divergence (curl grad = 0 and div curl = 0) on the discrete level as
curlDgradD = 0, curlV gradV = 0, divV curlD = 0, and divDcurlV = 0. Exploiting
these properties gives the exact block factorization of (2.12),
(5.2)

\scrA MFD =

\left[   \scrI \bfite V

 - \tau 
2 curlV \scrI \bfite D

 - \tau 
2divD \scrI V

\right]   
\underbrace{}  \underbrace{}  

\scrL 

\left[   
2
\tau \scrI \bfite V

\scrS \bfitE 

\scrS p

\right]   
\underbrace{}  \underbrace{}  

\scrS 

\left[   \scrI \bfite V
\tau 
2 curlD

\scrI \bfite D
\tau 
2gradD
\scrI V

\right]   
\underbrace{}  \underbrace{}  

\scrU 

,

with the Schur complements computed exactly as

\scrS \bfitE =
\tau 

2
curlV curlD +

2

\tau 
\scrI \bfite D , \scrS p =

\tau 

2
divDgradD +

2

\tau 
\scrI V .

For the remainder of the paper, we drop the subscript notation and just represent
\scrA MFD by \scrA .

Several block preconditioners can be designed from the exact factorization, (5.2).
A natural choice of preconditioner is \scrS  - 1. However, this involves computing the
inverse of the Schur complements, making this choice impractical. To rectify this,
replace the Schur complements, \scrS \bfitE and \scrS p, with good preconditioners, \scrQ \bfitE and \scrQ p.
For example, an HX-preconditioner [17] can be used for \scrQ \bfitE and a standard multigrid
preconditioner for \scrQ p. Note that the top left entry in \scrS is a scaled identity matrix,
so no spectrally equivalent approximation is needed. For the remaining two blocks,
we assume that

c1,\bfitE \leq \lambda (\scrQ \bfitE \scrS \bfitE ) \leq c2,\bfitE ,(5.3)

c1,p \leq \lambda (\scrQ p\scrS p) \leq c2,p.(5.4)

This implies that for \scrQ = diag
\bigl( \bigl( 

2
\tau \scrI \bfite V

\bigr)  - 1
,\scrQ \bfitE ,\scrQ p

\bigr) 
, we have

c1 \leq \lambda (\scrQ \scrS ) \leq c2,
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where c1 = min(c1,\bfitE , c1,p) and c2 = max(c2,\bfitE , c2,p).
From this factorization, we consider three different block preconditioners,

(5.5) \scrX \scrL \scrS := \scrQ \scrL  - 1, \scrX \scrS \scrU := \scrU  - 1\scrQ , \scrX \scrL \scrS \scrU := \scrU  - 1\scrQ \scrL  - 1,

where \scrL  - 1 and \scrU  - 1 can be computed directly:

\scrL  - 1 =

\left[   \scrI \bfite V

\tau 
2 curlV \scrI \bfite D

\tau 
2divD \scrI V

\right]   , \scrU  - 1 =

\left[   \scrI \bfite V  - \tau 
2 curlD

\scrI \bfite D  - \tau 
2gradD
\scrI V

\right]   .

In the following theorem, we prove that these preconditioners are robust with respect
to the discretization parameters. By bounding the eigenvalues for the preconditioned
system, we guarantee good performance of GMRES. Note that the following proof
can be done to show that the constants c1 and c2 are also independent of the PDE
parameters, \epsilon and \mu , but for simplicity we only consider the case where \epsilon = \mu = 1.
Otherwise, the identity matrices in the diagonal matrix of the decomposition would
be scaled by the PDE parameter values.

Theorem 5.1. Let \scrX \scrL \scrS , \scrX \scrS \scrU , and \scrX \scrL \scrS \scrU be defined by (5.5), and assume the
spectral equivalent properties (5.3)--(5.4) hold. Then

(5.6) \lambda (\scrX \scrL \scrS \scrA ) \in [c1, c2], \lambda (\scrX \scrS \scrU \scrA ) \in [c1, c2], \lambda (\scrX \scrL \scrS \scrU \scrA ) \in [c1, c2],

where c1 = min (c1,\bfitE , c1,p) and c2 = max (c2,\bfitE , c2,p) are constants that do not depend
on discretization parameters, h and \tau .

Proof. First, consider \scrX \scrL \scrS \scrA ,

\scrX \scrL \scrS \scrA = \scrQ \scrL  - 1\scrL \scrS \scrU = \scrQ \scrS \scrU =

\left[   \scrI \bfite V
\tau 
2 curlD

\scrQ \bfitE \scrS \bfitE \scrQ \bfitE gradD
\scrQ p\scrS p

\right]   .

The eigenvalues \lambda (\scrX \scrL \scrS \scrA ) are determined by the eigenvalues of the diagonal blocks
since \scrX \scrL \scrS \scrA is block upper triangular. The first block is an identity matrix, whose
eigenvalues are all ones. For the other two blocks, we use (5.3)--(5.4) to bound the
eigenvalues and, overall, have \lambda (\scrX \scrL \scrS \scrA ) \in [c1, c2].

To bound the eigenvalues of \scrX \scrS \scrU \scrA , consider the eigenvalue problem,

\scrX \scrS \scrU \scrA \bfitx = \lambda \bfitx \Leftarrow \Rightarrow \scrA \bfitx = \lambda \scrX  - 1
\scrS \scrU \bfitx .

By substituting in the decompositions of \scrA and \scrX \scrS \scrU , it follows that

\scrL \scrS \scrU \bfitx = \lambda \scrQ  - 1\scrU \bfitx .

Let \bfity = \scrU \bfitx , and left multiply by \scrQ . Then \scrQ \scrL \scrS \bfity = \lambda \bfity , where

\scrQ \scrL \scrS =

\left[   \scrI \bfite V

 - \scrQ \bfitE curlV \scrQ \bfitE \scrS \bfitE 

 - \scrQ pdivD \scrQ p\scrS p

\right]   .

Since\scrQ \scrL \scrS is block lower triangular, again the eigenvalues only depend on the diagonal
blocks. Thus, by (5.3)--(5.4), \lambda (\scrX \scrS \scrU \scrA ) \in [c1, c2].
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Finally, consider the preconditioned system

\scrX \scrL \scrS \scrU \scrA \bfitx = \scrU  - 1Q\scrL  - 1\scrL \scrS \scrU \bfitx = \scrU  - 1Q\scrS \scrU \bfitx = \lambda \bfitx .

Left multiplying by \scrU and letting \bfity = \scrU \bfitx yields

Q\scrS \bfity = \lambda \bfity ,

where

Q\scrS =

\left[   \scrI \bfite V

\scrQ \bfitE \scrS \bfitE 

\scrQ p\scrS p

\right]   .

By the same reasoning as for the other two cases, we conclude that \lambda (\scrX \scrL \scrS \scrU \scrA ) \in 
[c1, c2].

5.1. Preservation of the divergence-free magnetic field. The goal of using
a structure-preserving discretization for the Maxwell system is to enforce the PDE
constraints on the discrete level. However, even if the discretization holds, the ap-
proximate solve for each time step of a linear solver can destroy these properties. The
following theorem ensures that at each iteration of the linear solver, the divergence-
free condition for \bfitB is preserved.

Theorem 5.2. Let \bfitx 0 =
\bigl( 
\bfitB 0

V ,\bfitE 
0
D, p0D

\bigr) T
be the initial guess for the MFD system

satisfying divV \bfitB 0
V = 0, and let \bfitb =

\bigl( 
\bfitg V
\bfitB , \bfitg D

\bfitE , gDp
\bigr) T

be the MFD right-hand side sat-

isfying divV \bfitg V
\bfitB = 0. Then all iterations, \bfitx k =

\bigl( 
\bfitB k

V ,\bfitE 
k
D, pkD

\bigr) T
, of the preconditioned

GMRES method satisfy divV \bfitB k
V = 0, where \scrX is any of the preconditioners defined

in (5.5).

Proof. Define the Krylov subspace,

Kk(\scrX \scrA , \bfitr 0) = span\{ \bfitr 0,\scrX \scrA \bfitr 0, (\scrX \scrA )
2
\bfitr 0, . . . , (\scrX \scrA )

k
\bfitr 0\} ,

with \bfitr 0 =
\bigl( 
\bfitr 0\bfitB , \bfitr 0\bfitE , \bfitr 0p

\bigr) T
:= \scrX 

\bigl( 
\bfitb  - \scrA \bfitx 0

\bigr) 
such that for each iteration,

(5.7) \bfitx k \in \bfitx 0 +Kk
\bigl( 
\scrX \scrA , \bfitr 0

\bigr) 
.

By the assumption of the divergence-free initial data, it follows that divV \bfitr 
0
\bfitB = 0.

Next, let \bfitv m =
\bigl( 
\bfitv m
\bfitB ,\bfitv m

\bfitE ,\bfitv m
p

\bigr) T
:= (\scrX \scrA )

m
\bfitr 0 for m = 0, 1, . . . , k  - 1. Since \bfitv m =

\scrX \scrA \bfitv m - 1, we compute \bfitv m
\bfitB for each of the preconditioners in (5.5). Setting \scrX = \scrX \scrL \scrS ,

\bfitv m
\bfitB =

\biggl( 
2

\tau 
\scrI \bfite V

\biggr)  - 1 \biggl( 
2

\tau 
\bfitv m - 1
\bfitB + curlD\bfitv m - 1

\bfitE 

\biggr) 
= \bfitv m - 1

\bfitB +
\tau 

2
curlD\bfitv m - 1

\bfitE .

For \scrX = \scrX \scrS \scrU ,

\bfitv m
\bfitB = \bfitv m - 1

\bfitB +
\tau 

2
curlD

\biggl( 
\bfitv m - 1
\bfitE +\scrQ \bfitE curlV \bfitv 

m - 1
\bfitB  - 2

\tau 
\scrQ \bfitE \bfitv m - 1

\bfitE  - \scrQ \bfitE gradD\bfitv m - 1
p

\biggr) 
,

and for \scrX = \scrX \scrL \scrS \scrU ,

\bfitv m
\bfitB = \bfitv m - 1

\bfitB 

+ curlD

\biggl( 
\tau 

2
\bfitv m - 1
\bfitE  - \tau 2

4
\scrQ \bfitE curlV curlD\bfitv m - 1

\bfitE  - \scrQ \bfitE \bfitv m - 1
\bfitE  - \tau 

2
\scrQ \bfitE gradD\bfitv m - 1

p

\biggr) 
.
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Applying divV to \bfitv m
\bfitB for each preconditioner above, all terms with curlD in front

are zero since divV curlD = 0. Then divV \bfitv 
m
\bfitB = 0 if divV \bfitv 

m - 1
\bfitB = 0. By an inductive

argument, since divV \bfitr 
0
\bfitB = 0, we have that divV \bfitv 

m
\bfitB = 0. By (5.7) and the definition

of \bfitv m, \bfitx k is a linear combination of \bfitv m, m = 0, 1, . . . , k  - 1 . This implies that \bfitB k
V

is a linear combination of \bfitv m
\bfitB . Since divV \bfitv 

m
\bfitB = 0, then divV \bfitB 

k
V = 0 for all k.

6. Numerical results. To demonstrate the theoretical results presented in the
previous sections, consider the following test problem with essential Dirichlet bound-
ary conditions:

\bfitE (\bfitx , t) =
1

\pi 
e - t

\left[    - \mathrm{c}\mathrm{o}\mathrm{s}(\pi x1) \mathrm{s}\mathrm{i}\mathrm{n}(\pi x2) \mathrm{s}\mathrm{i}\mathrm{n}(\pi x3)

\mathrm{s}\mathrm{i}\mathrm{n}(\pi x1) \mathrm{c}\mathrm{o}\mathrm{s}(\pi x2) \mathrm{s}\mathrm{i}\mathrm{n}(\pi x3)

0

\right]   ,(6.1)

\bfitB (\bfitx , t) = e - t

\left[    - \mathrm{s}\mathrm{i}\mathrm{n}(\pi x1) \mathrm{c}\mathrm{o}\mathrm{s}(\pi x2) \mathrm{c}\mathrm{o}\mathrm{s}(\pi x3)

 - \mathrm{c}\mathrm{o}\mathrm{s}(\pi x1) \mathrm{s}\mathrm{i}\mathrm{n}(\pi x2) \mathrm{c}\mathrm{o}\mathrm{s}(\pi x3)

2 \mathrm{c}\mathrm{o}\mathrm{s}(\pi x1) \mathrm{c}\mathrm{o}\mathrm{s}(\pi x2) \mathrm{s}\mathrm{i}\mathrm{n}(\pi x3)

\right]   ,(6.2)

p(\bfitx , t) = 0,(6.3)

\bfitj (\bfitx , t) =  - e - t

\biggl( 
1

\pi 
+ 3\pi 

\biggr) \left[   \mathrm{c}\mathrm{o}\mathrm{s}(\pi x1) \mathrm{s}\mathrm{i}\mathrm{n}(\pi x2) \mathrm{s}\mathrm{i}\mathrm{n}(\pi x3)

 - \mathrm{s}\mathrm{i}\mathrm{n}(\pi x1) \mathrm{c}\mathrm{o}\mathrm{s}(\pi x2) \mathrm{s}\mathrm{i}\mathrm{n}(\pi x3)

0

\right]   .(6.4)

While the analysis presented in this paper holds for a general Voronoi mesh,
for simplicity, we consider a nondegenerate mesh, where the Voronoi points do not
lie on the boundary or outside of the corresponding Delaunay tetrahedra. To get
a nondegenerate Voronoi mesh, we design a Delaunay triangulation for the FE do-
main that consists of a cube with a rectangular pyramid on each face (see Figure 3).
The pyramids are defined by the faces of the unit cube and the points

\bigl( 
 - 1

2 ,
1
2 ,

1
2

\bigr) 
,\bigl( 

3
2 ,

1
2 ,

1
2

\bigr) 
,
\bigl( 
1
2 , - 

1
2 ,

1
2

\bigr) 
,
\bigl( 
1
2 ,

3
2 ,

1
2

\bigr) 
,
\bigl( 
1
2 ,

1
2 , - 

1
2

\bigr) 
,
\bigl( 
1
2 ,

1
2 ,

3
2

\bigr) 
. Uniform refinement is used to

get more resolved meshes, and Table 1 lists the geometric information for the differ-
ent resolutions considered. Numerical experiments are implemented in the HAZmath
package [1] written by the authors. All timed numerical results are done using a
workstation with an 8-core 3-GHz Intel Xeon Sandy Bridge CPU and 256 GB of
RAM.

Fig. 3. Left: Delaunay mesh with h = 1; Right: cross section at z = 1/2.
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Table 1
Geometric information for the Delaunay meshes.

h Vertices Edges Faces DoF

Mesh 1 1/4 369 2,096 3,264 5,729

Mesh 2 1/8 2,465 15,520 25,344 43,329

Mesh 3 1/16 17,985 119,360 199,680 337,025

Mesh 4 1/32 137,345 936,064 1,585,152 2,658,561

Mesh 5 1/64 1,073,409 7,414,016 12,632,064 21,119,489

To demonstrate the equivalence of the two discretizations, MFD and FEM are
implemented and solved with \scrX \scrL \scrS \scrU -preconditioned FGMRES with restart after 100
iterations to a relative residual tolerance of 10 - 8. We expect FE convergence rates
with respect to mesh size for both. More precisely, with L2 norm in space and
L\infty norm in time, \bfitE and \bfitB modeled with lowest order N\'ed\'elec and RT elements,
respectively, are expected to converge with \scrO (h+\tau 2), where h is the mesh partitioning
and \tau is the time-step size. Results for p are excluded, as it is just an auxiliary variable
with no physical relevance to the problem. By choosing a small time step and few
time iterations (\tau = .0125 for 8 time steps, i.e., final time t = 0.1), the spatial error
dominates. This is confirmed in Figure 4, where the spatial convergence of the MFD
scheme is identical to the FEM one.

Fig. 4. L\infty \bigl( 
[0, t];L2(\Omega )

\bigr) 
error for FEM (left) and MFD (right) for \tau = 0.0125 after 8 time

steps (t = 0.1) solving with the \scrX \scrL \scrS \scrU preconditioner and FGMRES.

Next, performance comparisons are made between the MFD and FE methods
using the preconditioners developed in section 5 for MFD and in [2] for FEM. Again
using test problem (6.1)--(6.4) and meshes given by Table 1, we test the precondition-
ers defined in (5.5) for robustness with respect to time step, \tau , and mesh size, h. The
diagonal blocks of the preconditioners are solved inexactly by preconditioned GMRES
with a relative residual reduction set at 10 - 2 for the outer iteration. Flexible GMRES
is used as the outer iteration with a relative residual stopping criterion of 10 - 8, with
restart after 100 iterations. Iteration counts for both MFD and FEM with precon-
ditioners \scrX \scrL \scrS , \scrX \scrS \scrU , and \scrX \scrL \scrS \scrU are reported in Tables 2 and 3. In all experiments,
iteration counts are averaged over the number of time steps needed to reach t = 1.
The spectral equivalent approximations used in \scrQ are an HX preconditioner [17, 20]
for \scrS \bfitE and a standard algebraic multigrid method for \scrS p.

The results show little variation in iteration count with varying parameters, indi-
cating that the block preconditioners based on exact block factorization are effective
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Table 2
Iteration counts for the block preconditioners based on block factorization for MFD. Left: block

lower triangular, \scrX \scrL \scrS ; Center: block upper triangular, \scrX \scrS \scrU ; Right: symmetric, \scrX \scrL \scrS \scrU .

\scrX \scrL \scrS \scrX \scrS \scrU \scrX \scrL \scrS \scrU 

\tau 

h 1
4

1
8

1
16

1
32

1
64

1
4

1
8

1
16

1
32

1
64

1
4

1
8

1
16

1
32

1
64

0.2 5 5 5 6 8 5 5 5 6 6 4 3 4 4 4

0.1 3 4 5 5 6 4 5 5 5 6 2 3 3 4 4

0.05 4 3 4 4 5 4 4 5 5 5 3 2 3 3 3

0.025 3 4 3 4 4 3 4 4 5 5 2 3 2 3 3

0.0125 2 3 4 3 3 3 3 4 4 4 2 2 3 2 3

Table 3
Iteration counts for the block preconditioners based on block factorization for FEM. Left: block

lower triangular, \scrX \scrL \scrS ; Center: block upper triangular, \scrX \scrS \scrU ; Right: symmetric, \scrX \scrL \scrS \scrU .

\scrX \scrL \scrS \scrX \scrS \scrU \scrX \scrL \scrS \scrU 

\tau 

h 1
4

1
8

1
16

1
32

1
64

1
4

1
8

1
16

1
32

1
64

1
4

1
8

1
16

1
32

1
64

0.2 4 4 4 4 4 5 5 5 5 4 3 3 3 3 3

0.1 5 4 4 4 4 5 5 5 5 4 3 3 3 3 3

0.05 4 4 4 4 3 5 4 4 4 4 3 2 3 3 3

0.025 3 3 3 3 3 4 4 3 3 2 3 2 2 2 2

0.0125 3 3 3 3 3 3 3 4 3 3 3 2 2 2 3

and robust with respect to mesh size, h, and time step size, \tau , for both MFD and
FEM as expected. Furthermore, MFD has iteration counts comparable to FE.

To further compare the two methods, CPU solve time per time iteration is exam-
ined for fixed time-step size, as well as the time scaling of the solve time per time step
for the three preconditioned FGMRES solvers, both with respect to mesh refinement.
In Table 4, the average solve time over 10 iterations with fixed \tau is reported. We
see that as the number of degrees of freedom increases, the FE method beats MFD,
especially for \scrX \scrL \scrS and \scrX \scrS \scrU . This is further demonstrated in Figure 5, where a side-
by-side comparison of the three preconditioners for MFD and FEM is given. This time
disparity is likely given by the fact that MFD takes slightly more GMRES iterations
per solve, which could be due to the fact that the MFD system is not symmetric while
FEM is.

Table 4
Average CPU solve time per time iteration over 10 time steps with \tau = 0.1 for MFD and FEM

with all preconditioners.

h 1
4

1
8

1
16

1
32

1
64

MFD

\scrX \scrL \scrS 1.32\times 10 - 2 1.06\times 10 - 1 9.95\times 10 - 1 1.31\times 101 1.68\times 102

\scrX \scrS \scrU 1.48\times 10 - 2 1.12\times 10 - 1 1.10\times 100 1.41\times 101 1.96\times 102

\scrX \scrL \scrS \scrU 1.06\times 10 - 2 8.32\times 10 - 2 8.15\times 10 - 1 1.12\times 101 1.41\times 102

FEM

\scrX \scrL \scrS 2.05\times 10 - 2 1.08\times 10 - 1 8.84\times 10 - 1 9.62\times 100 1.09\times 102

\scrX \scrS \scrU 2.45\times 10 - 2 1.24\times 10 - 1 1.02\times 100 1.19\times 101 1.17\times 102

\scrX \scrL \scrS \scrU 1.79\times 10 - 2 9.17\times 10 - 2 7.57\times 10 - 1 8.04\times 100 1.06\times 102

Finally, it is expected that the solve time scales \scrO (N log(N)), where N is the
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number of degrees of freedom. Figure 6 verifies this, where both FE and MFD results
follow the trend of the reference line for all three preconditioners.

Based on the results presented, we conclude that all three preconditioners are
robust and effective for solving the MFD system and give results comparable to the
FE method. In terms of both solve time and iteration counts, \scrX \scrL \scrS \scrU is the best
preconditioner for both methods, which was also concluded in [2] for the FE method.

Fig. 5. Comparison of solve time averaged over 10 time steps of \tau = 0.1 for MFD and FEM
for fixed mesh size h = 1

64
. The number of FGMRES iterations is given above each bar.

Fig. 6. Time scaling of solve time averaged over 10 time steps of \tau = 0.1 for FEM (left) and
MFD (right), where N is the number of degrees of freedom.

7. Conclusions. By examining MFD in an FE framework, we are able to ex-
ploit the FEM tools and theory to strengthen the MFD method for Maxwell. From
this equivalence of the two methods, well-posedness of the MFD system is proven
with Babu\v ska--Brezzi theory. Numerical results demonstrate that the FE convergence
theory is recoverable in the MFD implementation. Furthermore, in showing well-
posedness of the Maxwell MFD discretization and the connection to the FEM, robust
block preconditioners developed for the FEM in [2] are adopted for solving the MFD

D
ow

nl
oa

de
d 

08
/2

5/
21

 to
 1

30
.6

4.
35

.1
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2658 ADLER ET AL.

linear system efficiently. When using structure-preserving discretizations, the goal is
to enforce the PDE constraints, particularly a divergence-free magnetic field for Max-
well's equations, at all time steps and all solve iterations. The block preconditioners
for GMRES developed here are shown to be robust and guarantee all properties of
the discretization at each time step.

All of the results in this paper apply to lowest-order FE and MFD methods. While
higher-order MFD methods exist [14, 21, 22], connections to higher-order FEM are
unclear and require further investigation. If such relationships are found, the analysis
presented here should be valid. Additionally, a priori error estimates for MFD for
Maxwell could be derived in a fashion similar to the techniques used for Darcy flow
in [13]. Furthermore, now that an FE framework for MFD has been developed for
the full Maxwell system, other electromagnetic applications can be explored, such as
MHD, time-harmonic Maxwell, or \bfitH (curl) and \bfitH (div) problems, in general. The
structure-preserving nature of the MFD discretization opens the door for many more
physical applications with PDE constraints to be explored.
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