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MONOLITHIC MULTIGRID FOR A REDUCED-QUADRATURE
DISCRETIZATION OF POROELASTICITY∗
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Abstract. Advanced finite-element discretizations and preconditioners for models of poroe-
lasticity have attracted significant attention in recent years. The equations of poroelasticity offer
significant challenges in both areas, due to the potentially strong coupling between unknowns in the
system, saddle-point structure, and the need to account for wide ranges of parameter values, includ-
ing limiting behavior such as incompressible elasticity. This paper was motivated by an attempt to
develop monolithic multigrid preconditioners for the discretization developed in [C. Rodrigo et al.,
Comput. Methods App. Mech. Engrg, 341 (2018), pp. 467–484]; we show here why this is a difficult
task and, as a result, we modify the discretization in [Rodrigo et al.] through the use of a reduced-
quadrature approximation, yielding a more “solver-friendly” discretization. Local Fourier analysis is
used to optimize parameters in the resulting monolithic multigrid method, allowing a fair compari-
son between the performance and costs of methods based on Vanka and Braess–Sarazin relaxation.
Numerical results are presented to validate the local Fourier analysis predictions and demonstrate
efficiency of the algorithms. Finally, a comparison to existing block-factorization preconditioners is
also given.

Key words. Biot poroelasticity, reduced quadrature, finite elements, monolithic multigrid, local
Fourier analysis
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1. Introduction. Poroelasticity describes a number of processes modeled by
flows in deformable porous media, which are of interest in geoscience, biomedical
science, and engineering. In this paper, we consider Biot’s model for linear poroelas-
ticity [6, 7], a coupled, multiphysics system of partial differential equations (PDEs).
There are many challenges in developing both discretizations and fast and robust
solvers for these equations. For the discretization, using mixed finite elements, it
is necessary to carefully choose approximation spaces in order to avoid spurious os-
cillations in the pressure field as well as to achieve robustness to variations in the
PDE parameters, particularly in extreme limits, such as incompressibility. After
discretization, the resulting linear system is of saddle-point type, requiring special
solvers to deal with the indefiniteness and with the usual ill-conditioning of the
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discretized system, and to achieve similar robustness with respect to the physical
parameters.

Many different types of discretizations exist for the various formulations of Biot’s
model. For instance, a finite-volume method on a staggered grid is provided for
the three-dimensional Biot poroelastic system in [48]. For the two-field formulation,
where displacement and pressure are the unknowns, stable Taylor–Hood elements are
used in [45, 46, 47]. In [51], a MINI element and a stabilized P1-P1 finite-element
discretization are presented, and a stabilization term is introduced to remove non-
physical oscillations, leading to monotone behavior of the stabilized schemes. More
recently, a weak Galerkin finite-element method is proposed on general shape-regular
polytopal meshes, which demonstrates the robustness of the proposed weak Galerkin
discretization [35]. For three-field formulations, where displacement, pressure, and
the Darcy velocity are the unknowns, a nonconforming finite-element approach for
the three-field formulation, using Crouzeix–Raviart finite elements for the displace-
ments, lowest-order Raviart–Thomas–Nédélec elements for the Darcy velocity, and
a piecewise constant approximation for the pressure, is considered in [63] for the
two-dimensional case on rectangular grids. It is extended to general cases in [36],
where a mass-lumping technique is introduced for the Raviart–Thomas–Nédélec ele-
ments to eliminate the Darcy velocity, reducing the computational cost. A family of
parameter-robust schemes is found in [34] and a general theory for the error analysis
is introduced. More recently, hybridization schemes are developed in [26, 49]. For
a four-field formulation, with the stress tensor, fluid flux, displacement, and pore
pressure as unknowns, stable discretizations are developed in [40, 64].

In this work, we consider a stabilized finite-element method based on the popu-
lar P1-RT0-P0 discretization of the three-field formulation developed in [53], where
face bubble functions are used to enrich the P1 space for the displacements. A per-
turbation of the bilinear form allows for local elimination of the bubble functions,
leading to the same number of degrees of freedom (DoFs) as the P1-RT0-P0 dis-
cretization. This type of discretization is appealing, as it leads to a minimally sized
system of equations, yet lends itself to robust linear solvers, independent of discretiza-
tion and physical parameters. While we do not consider the perturbation in this
paper, the main goal here is to extend this bubble-enriched discretization to make
it amenable to efficient solvers, such as the monolithic multigrid solvers described
below.

After discretization, large linear systems of equations must be solved to compute
the finite-element approximation to the solution of the poroelasticity equations. This
requires development of specialized preconditioners, and both block preconditioning
and monolithic multigrid methods have been successfully applied, especially for Biot’s
model. For instance, robust block preconditioners are studied for the two-field formu-
lation in [3, 15, 16, 21, 61] and for the three-field formulation in [2, 15, 22, 34]. A multi-
grid method using alternating line Gauss–Seidel relaxation for the three-dimensional
Biot poroelasticity system is presented in [48], which focuses on the study of the grid-
transfer operators in the multigrid method. For the quasi-static Biot model, pointwise
and linewise box Gauss–Seidel relaxation are investigated in [14], where local Fourier
analysis (LFA) is used to help analyze and predict performance of the algorithms.
In [41], an Uzawa relaxation is employed and analyzed using LFA. The fixed-stress
split method is used as a relaxation scheme for the two-field formulation of Biot’s
consolidation model in [29], where again LFA is applied to study the convergence of
the multigrid method. Similarly, a new version of the fixed-stress splitting method [9]
is proposed for solving coupled flow and geomechanics in porous media, modeled by
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a two-field formulation of Biot’s equations. Finally, multigrid waveform relaxation
based on a pointwise Vanka relaxation method is proposed for solving a collocated
finite-difference discretization of the linear Biot model in [25].

Despite the work mentioned above, applications of monolithic multigrid for the
discretized systems of Biot’s model are rare. In particular, given the scalable precondi-
tioning results shown in [2] for the discretization from [53], a natural question to ask is
whether monolithic multigrid can compete with efficient block preconditioners. As dis-
cussed below, initial work for this paper focused on the extension of typical monolithic
multigrid relaxation schemes, known as Braess–Sarazin [10] and Vanka [60] relaxation,
to the three-field discretization from [53]. While direct extensions of these methods
lead to efficient preconditioners for some physical parameters, we found that they did
not extend effectively to the limit of an incompressible material. Following [54, 55, 56],
we recognize this as an inherent consequence of the fact that the bubble-enriched P1
space does not admit a local basis for the space of divergence-free functions and, as
such, standard multigrid approaches for the elasticity block are not parameter-robust.
To overcome this difficulty, we modify the discretization from [53] to make use of the
reduced-quadrature approach [8, 17, 43, 54, 55, 56], which replaces exact integration
of the divergence terms with that of an L2 projection. Such a modification has been
adopted for poroelasticity problems in [65] in order to handle locking issues when
λ→ ∞. Here, we find that it also provides a “solver-friendly” discretization. One of
our contributions in this work is to show that using the reduced-quadrature approach
still results in a well-posed discretization, which is parameter-robust, and does not
lose accuracy in comparison to the discretization of [53].

Having constructed the reduced-quadrature discretization, the remainder of this
paper focuses on the development and analysis of optimal monolithic multigrid pre-
conditioners for it. In particular, we apply LFA [59, 62] to the components of the
multigrid method in order to optimize parameters within the commonly used Braess–
Sarazin and Vanka relaxation schemes. In recent years, LFA has been widely used
for this purpose in many contexts; for systems of PDEs, such as we consider here, it
has been applied to discretizations of the Stokes equations [28, 31, 32, 42, 52] and,
in a more limited manner, to discretizations of poroelasticity [41]. Numerical results
confirm the accuracy of the LFA predictions.

In what follows, we address how the incompressibility constraint associated with
the elasticity block of the coupled system affects the convergence of our proposed
multigrid algorithm. In particular, we show that the ideas of reduced-quadrature
discretization and divergence-free interpolation, originally proposed and analyzed for
the incompressible elasticity subproblem, can be extended to the fully coupled Biot
model. We show that the modified discretization remains well-posed, and that we
are able to develop a robust monolithic multigrid approach for the resulting three-
field formulation. Specifically, this paper is organized as follows. In section 2, we
introduce the stabilized finite-element discretization provided in [53] for the three-
field formulation of Biot’s model, as well as the reduced-quadrature discretization, for
which proofs of well-posedness and error estimates are given. In section 3, we review
monolithic multigrid, with focus on both the choice of relaxation scheme for solving
the discretized system and the use of divergence-preserving interpolation operators
to achieve robustness in the nearly incompressible case. LFA for this discretization
is considered in section 4. In section 5, numerical results are presented to show
the efficiency of the proposed solvers, and comparisons are given between existing
block preconditioning approaches and the monolithic multigrid methods proposed
here. Finally, conclusions and remarks are drawn in section 6.

D
ow

nl
oa

de
d 

07
/0

1/
23

 to
 1

30
.6

4.
11

.1
61

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTIGRID FOR REDUCED-QUADRATURE POROELASTICITY S57

2. Biot’s three-field formulation and its discretization. The mathematical
model of the three-field formulation of the consolidation process is described by the
following system of PDEs in a domain Ω ⊂ Rd, d = 2, 3, with sufficiently smooth
boundary, Γ = ∂Ω:

−div(2µε(u))− λ∇(divu) + α∇p = ρg,(2.1)

K−1µfw +∇p = ρfg,(2.2)

∂

∂t

(
1

M
p+ αdivu

)
+ divw = f.(2.3)

Here, µf is the viscosity of the fluid, M is the Biot modulus, ρ and ρf are the bulk
density and fluid density, respectively, and α = 1 − Kb

Ks
is the Biot–Willis constant,

with Kb and Ks denoting the drained and the solid-phase bulk moduli, respectively.
The absolute permeability tensor is given by K which is symmetric positive definite.
The strain tensor is denoted by ε(u) = 1

2 (∇u+∇u⊤). The unknown functions are the
displacement vector u, the pore pressure p, and the percolation velocity of the fluid,
or Darcy velocity, relative to the soil, w. The vector-valued function g represents the
gravitational force. Finally, µ = E

2+2ν and λ = Eν
(1−2ν)(1+ν) are the Lamé coefficients

where ν is the Poisson ratio and E is Young’s modulus. As ν → 0.5, we have λ→ ∞,
the incompressible limit that causes difficulties in numerical simulations. Other limits
that cause numerical difficulties are when the permeability, K → 0, and (2.2) is
dominated by its first term or, when discretized, the time step goes to zero and (2.3)
is dominated by the term from time stepping. Finally, this system is subject to
boundary conditions of various forms. One typical example is

p = 0 for x ∈ Γ̄t, 2µε(u)n+ λdiv(u)n = 0 for x ∈ Γt,

u = 0 for x ∈ Γ̄c,
∂p

∂n
= 0 for x ∈ Γc,

where n is the outward unit normal to the boundary, Γ̄ = Γ̄t

⋃
Γ̄c, with Γt and

Γc being open (with respect to Γ) subsets of Γ with nonzero measure. Appropriate
initial conditions for the pressure and displacement (more precisely, for div u) are
also needed.

2.1. Finite-element discretization. Following [53], we consider a variational
problem such that for each t ∈ (0, T ], (u(t), p(t),w(t)) ∈ V ×Q×W , with

V = {u ∈ H1(Ω) | u|Γc
= 0}, Q = L2(Ω),

W = {w ∈ H(div,Ω) | (w · n)|Γc
= 0},

where H1(Ω) is the space of square integrable vector-valued functions whose first
derivatives are also square integrable, and H(div,Ω) contains the square integrable
vector-valued functions with square integrable divergence.

Using backward Euler as a time discretization on a time interval (0, T ] with con-
stant time step size τ , the discrete variational form for Biot’s three-field consolidation
model, (2.1)–(2.3), is written as, Find (um

h , p
m
h ,w

m
h ) ∈ Vh ×Qh ×Wh such that

a(um
h ,vh)− (αpmh ,divvh) = (ρg,vh) ∀ vh ∈ Vh,(2.4)

τ(K−1µfw
m
h , rh)− τ(pmh ,divrh) = τ(ρfg, rh) ∀ rh ∈ Wh,(2.5)

−
(

1

M
pmh , qh

)
− (αdivum

h , qh)− τ(divwm
h , qh) = −(f̂ , qh) ∀ qh ∈ Qh,(2.6)
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where (·, ·) denotes the standard L2(Ω) inner product. Here, (um
h , p

m
h ,w

m
h ) is an ap-

proximation to (u(·, tm), p(·, tm),w(·, tm)) , at time tm = mτ, m = 1, 2, . . ., (f̂ , qh) =
τ(f, qh)+( 1

M pm−1
h , qh)+(αdivum−1

h , qh) and a(u,v) = 2µ (ε(u), ε(v))+λ(divu,divv)
is the usual weak form for linear elasticity. Note that (2.5) has been scaled by τ and
(2.6) has been scaled by −1 to make the system symmetric.

For finite-element spaces, we consider linear elements (P1), enriched with bubble
functions on faces for Vh ⊂ V . These face-normal bubble functions are quadratic
in two dimensions and cubic in three dimensions. Their DoFs are defined as the
integrated normal displacement across the associated faces. This space is covered in
depth in Chapter 2.1 of [30]. We choose Qh ⊂ Q as the piecewise constant space (P0)
for the pressure, and Wh ⊂ W as the standard lowest-order Raviart–Thomas space
(RT0) for the Darcy velocity. It has been shown that this discretization is a stable
finite-element approximation; see [53].

Finally, this discrete variational form can be represented in block matrix form as

A

 u
w
p

 = b with A =

 Au 0 αB⊤
u

0 τMw τB⊤
w

αBu τBw − 1
MMp

 .(2.7)

The blocks in the matrix A correspond to the following bilinear forms:

a(uh,vh) → Au, −(divuh, qh) → Bu, −(divwh, qh) → Bw,

(K−1µfwh, rh) →Mw, (ph, qh) →Mp.

2.2. Solver incompatibility. While the above discretization is well-posed and,
as shown in [53], is robust to variations in the physical and discretization parame-
ters, solving the resulting linear system in a similarly parameter-robust manner is not
straightforward. A block preconditioning framework was proposed in [2] for the solu-
tion of the linear system and the proposed approaches were proven to be parameter-
robust under the assumption that each diagonal block of the preconditioner can be
solved in a parameter-robust manner. While [2] contains a detailed parameter study,
the primary measure of convergence there was in outer iterations of FGMRES, where
the inner iterations (to approximate solves with the diagonal blocks of the block pre-
conditioners) were done to fixed tolerances with AMG-preconditioned GMRES. As
numerical results presented below in section 5 will show, while the outer iterations
reported in [2] are robust to the physical parameters (in particular, the incompressible
limit), the inner iterations are not.

In preliminary investigations for this paper, similar behavior was seen for the
monolithic multigrid methods detailed below. There are several common relaxation
schemes considered when applying monolithic multigrid to block-structured saddle-
point problems, such as the system in (2.7), which will be described in more detail
below. Braess–Sarazin approaches use approximations to the block factorization of
A as relaxation schemes. Exact Braess–Sarazin relaxation (BSR) is based on exact
solution of the approximate Schur complement(s) in such a factorization, while inexact
Braess-Sarazin methods also introduce an approximation to the Schur complement(s).
An alternative approach is to use Vanka relaxation schemes (see subsection 3.2.1),
which are block overlapping Schwarz methods, with small blocks chosen to reflect
the saddle-point structure of the system. Table 2.1 shows that while exact BSR is
effective in a parameter-independent manner, convergence suffers for both inexact
Braess–Sarazin and Vanka relaxation schemes.
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Table 2.1
Measured convergence factors for monolithic multigrid applied to (2.7), with K = kI, k = 10−6,

and varying ν, for a uniform mesh h = 1/64 of the unit square and a time step size of τ = 1.0.

ν 0.0 0.2 0.4 0.45 0.49 0.499

Exact BSR 0.067 0.067 0.067 0.067 0.067 0.067
Inexact BSR 0.440 0.471 0.586 0.659 0.790 0.968
Vanka 0.515 0.513 0.589 0.659 0.794 0.970

Fig. 2.1. Error and divergence of the error for displacement after 40 cycles of two-level multigrid
with Vanka relaxation, for ν = 0.49, applied to a problem with zero right-hand side and random initial
guess. The divergence of the error illustrates neighboring element pairs with divergence of similar
magnitude but opposite sign, indicating a globally supported divergence-free null-space.

The degradation in performance from exact to inexact BSR as ν → 0.5 in Ta-
ble 2.1 was carefully studied. For both Braess–Sarazin variants considered, we took
a Schur complement onto the displacement DoFs, and invested significant effort into
constructing relaxation schemes for that Schur complement that would lead to a ro-
bust inexact Braess–Sarazin variant. The primary source of the problem became clear
when looking at the dominant errors in the displacements after running two-grid cycles
with either the inexact Braess–Sarazin or Vanka relaxation, visualized for the Vanka
case in Figure 2.1. In essence, this error reflects a globally supported divergence-free
null-space that is difficult to eliminate using local relaxation schemes. As we next
show, this arises from the exact evaluation of the (divu,div v) term within the dis-
cretization, resulting in a discretization that is inherently not “solver-friendly,” due to
the lack of a local basis for the space of (nearly) divergence-free functions. To address
this, we modify the discretization using a reduced-quadrature approach [8, 43], as
suggested in [65] for poroelasticity problems.

2.3. Reduced quadrature. As recognized in [54, 55, 56], the nonlocal nature
of the basis for the divergence-free spaces arises from the direct evaluation of the
(divu,div v) term in the weak form, since the discrete divergence of the displacement
space is not a subset of the piecewise constant pressure space. To avoid this, we
implement a reduced integration approach [8, 17, 43, 65] and replace (divu,div v)
with (PQh

divu, PQh
div v), where PQh

is the L2 projection from Q onto Qh, the
space of piecewise constant functions. With this reduced integration approach, a basis
for the space of divergence-free functions is readily constructed with local support,
allowing local relaxation schemes to be effective for divergence-free components.

To illustrate this further, consider that the discretization for displacements has
a total of 2Nv + Ne DoFs, where Nv is the number of vertices in the mesh, and Ne

is the number of edges. By direct computation, around each vertex in the mesh, we
can introduce a local basis of three divergence-free functions, shown in Figure 2.2,

D
ow

nl
oa

de
d 

07
/0

1/
23

 to
 1

30
.6

4.
11

.1
61

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S60 ADLER, HE, HU, MACLACHLAN, AND OHM

Fig. 2.2. The local divergence-free bases supported by the discretization.

resulting in 3Nv divergence-free basis functions. The reduced-quadrature approach
constrains divu to be in the piecewise constant pressure space, thus there are NT − 1
divergence-free constraints, where NT is the number of triangular elements. Now,
subtracting the number of divergence-free constraints from the total DoFs, (2Nv +
Ne) − (NT − 1) = 3Nv, we get the number of divergence-free basis functions. Thus,
the reduced-quadrature approach fully supports the divergence-free functions through
the local basis functions in Figure 2.2.

Therefore, we define the bilinear form for the reduced-quadrature discretization
as

aRQ(u,v) := 2µ (ε(u), ε(v)) + λ(PQh
divu, PQh

div v).

Using this, the poroelastic system is then written as

ARQ =

 ARQ
u 0 αB⊤

u

0 τMw τB⊤
w

αBu τBw − 1
MMp

 ,(2.8)

where aRQ(uh,vh) → ARQ
u . We next show that this reduced-quadrature approach

remains well-posed independent of the physical and discretization parameters. To do
this, we first introduce the following lemma concerning the Stokes inf-sup condition.

Lemma 2.1. Let the pair of finite-element spaces Vh × Qh be Stokes stable, i.e.,
satisfy the inf-sup condition [30],

sup
v∈Vh

(div v, p)

∥v∥1
≥ γ0B∥p∥ ∀ p ∈ Qh,

where γ0B > 0 is a constant that does not depend on mesh size. Then, for any p ∈ Qh

sup
v∈Vh

(div v, p)

∥v∥ARQ
u

≥ γ0B√
dζ

∥p∥ =:
γB
ζ
∥p∥,(2.9)

where ∥v∥2
ARQ

u
:= aRQ(v,v), d is the dimension, and ζ :=

√
λ+ 2µ/d.

Proof. Using the properties of projection operators, we have that∥PQh
div v∥ ≤

∥ div v∥ for all v ∈ Vh. This, along with the definitions of ARQ
u and Au, yields

∥v∥ARQ
u

≤ ∥v∥Au ∀v ∈ Vh.(2.10)

Next, by direct computation and applying Young’s inequality, we have that
(div v,div v) ≤ d(ε(v), ε(v)). This implies that a(v,v) ≤ (2µ + dλ)(ε(v), ε(v)), and,
through another application of Young’s inequality, we have ∥v∥Au ≤

√
dζ∥v∥1, with

a(v,v) =: ∥v∥2Au
. Then, for any p ∈ Qh,
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sup
v∈Vh

(Buv, p)

∥v∥Au

≥ γ0B√
dζ

∥p∥ =:
γB
ζ
∥p∥.(2.11)

Thus, (2.11) and (2.10) give (2.9).

Note that since the norm ∥·∥ARQ
u

is parameter-dependent, in the large λ limit, both

sides of (2.9) behave as 1/
√
λ. We now show that the reduced-quadrature discretiza-

tion is well-posed, using the fact that the bubble-enriched P1-RT0-P0 discretization
is Stokes–Biot stable (see Definition 3.1 in [53]).

Theorem 2.2. Let Xh = (Vh,Wh, Qh) be Stokes–Biot stable, that is,
• ∃ CV > 0 such that a(u,v) ≤ CV ∥u∥1∥v∥1 for all u,v ∈ Vh;
• ∃ αV > 0 such that a(u,u) ≥ αV ∥u∥21 for all u ∈ Vh;
• (Wh, Qh) is Poisson stable, satisfying the necessary stability and continuity
conditions for the mixed formulation of Poisson’s equation; and

• the pair of spaces (Vh, Qh) is Stokes stable.
For x = (u,w, p) ∈ Xh and y = (v, r, q) ∈ Xh, define

B(x,y) =aRQ(u,v)− (αp,div v) + τ(K−1µfw, r)− τ(p,div r)(2.12)

− τ(divw, q)−
(

1

M
p, q

)
− (α divu, q) ,

∥x∥2DRQ =∥u∥2
ARQ

u
+ c−1

p ∥p∥2 + τ∥w∥2Mw
+ τ2cp∥ divw∥2,(2.13)

where ∥w∥2Mw
:= (K−1µfw,w), and cp = (α

2

ζ2 + 1
M )−1. Then

sup
0 ̸=x∈Xh

sup
0 ̸=y∈Xh

B(x,y)
∥x∥DRQ∥y∥DRQ

≤ ς̃ ,(2.14)

inf
0 ̸=y∈Xh

sup
0 ̸=x∈Xh

B(x,y)
∥x∥DRQ∥y∥DRQ

≥ γ̃,(2.15)

where the constants ς̃ and γ̃ are independent of the physical and discretization param-
eters.

Proof. Using Lemma 2.1, we know that for a given p ∈ Qh, there exists z ∈ Vh

such that (p,div z) ≥ γB

ζ ∥p∥2 and ∥z∥ARQ
u

= ∥p∥. Let v = u − ψ1z, r = w, and
q = −p−ψ2τ divw for constants ψ1 and ψ2 that will be specified later. Then, by the
Cauchy–Schwarz and Young’s inequalities,

B(x,y) = ∥u∥2
ARQ

u
− ψ1a

RQ(u, z) + ψ1α(p,div z) + τ∥w∥2Mw
+

1

M
∥p∥2

+ ψ2τ
1

M
(p, divw) + ψ2ατ(PQh

divu,divw) + ψ2τ
2∥ divw∥2

≥ ∥u∥2
ARQ

u
− 1

2
∥u∥2

ARQ
u

− ψ2
1

2
∥z∥2

ARQ
u

+ ψ1
αγB
ζ

∥p∥2 + τ∥w∥2Mw
+

1

M
∥p∥2

− 3ψ2

2

1

M2
∥p∥2 − ψ2

6
τ2∥ divw∥2 − ψ2

2
α2∥PQh

divu∥2 − ψ2

2
τ2∥ divw∥2

+ ψ2τ
2∥ divw∥2.

As in the proof of Lemma 2.1,

1

d
(PQh

divu, PQh
divu) ≤ 1

d
(divu,divu) ≤ (ϵ(u), ϵ(u)).
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Then, by direct calculation and the definition of ARQ
u , we have

∥PQh
divu∥ ≤ 1

ζ
∥u∥ARQ

u
.(2.16)

Combining terms and applying (2.16) gives

B(x,y) ≥
(
1

2
− ψ2

2

α2

ζ2

)
∥u∥2

ARQ
u

+ τ∥w∥2Mw
+

1

3
ψ2τ

2∥ divw∥2

+

(
ψ1
αγB
ζ

− ψ2
1

2

)
∥p∥2 +

(
1− 3

4

2ψ2

M

)
1

M
∥p∥2.

Choosing ψ1 = αγB

2ζ and ψ2 = 1
2 (

α2

ζ2 + 1
M )−1 then gives

B(x,y) ≥
(
1

2
− 1

4

)
∥u∥2

ARQ
u

+ τ∥w∥2Mw
+

1

6
τ2
(
α2

ζ2
+

1

M

)−1

∥divw∥2

+

(
3α2γ2B
8ζ2

)
∥p∥2 +

(
1− 3

4

)
1

M
∥p∥2

≥γ̄∥ (u,w, p) ∥2DRQ ,

where γ̄ = min{ 1
6 ,

3γ2
B

8 }. Then, by the triangle inequality,

∥y∥2DRQ = ∥v∥2
ARQ

u
+

(
α2

ζ2
+

1

M

)
∥q∥2 + τ∥r∥2Mw

+ τ2cp∥div r∥2 ≤ (γ∗)2∥x∥2DRQ ,

where (γ∗)2 = max{2, γ
2
B

4 }. Thus, the bilinear form B(·, ·) defined in (2.12) satisfies
(2.15) with γ̃ = γ∗/γ̄. For the upper bound, (2.14), using Cauchy–Schwarz and (2.16),
we have B(x,y) ≤ 8∥x∥DRQ∥y∥DRQ , which completes the proof.

Remark 2.3. To better understand the choice of the weighted norm (2.13), con-
sider two limiting cases. When λ→ ∞, B(x,y) is dominated by λ(PQh

divu, PQh
div v),

which corresponds to the dominating term λ∥PQh
divu∥2 in the weighted norm.

When τ → 0, B(x,y) reduces to aRQ(u, v) − (αp,div v) − (α divu, q) − 1
M (p, q),

which is a Stokes-like problem. The weighted norm (2.13), in this case, reduces to
∥u∥2

ARQ
u

+ c−1
p ∥p∥2, which is a proper choice for Stokes-type problems. Thus, the

weighted norm (2.13) is a proper choice in those limiting cases.

Remark 2.4. In [44], the minimal Stokes–Biot stability condition was proposed,
under which a wider class of discretizations can be shown to be parameter-robust for
solving the three-field formulation (2.1)–(2.3). That result also applies to the reduced-
quadrature discretization presented here, and the conclusions of Theorem 2.2 still hold
if we assume Xh = (Vh,Wh, Qh) to be minimal Stokes–Biot stable, i.e., replacing the
condition that (Wh, Qh) is Poisson stable by divWh ⊂ Qh. In fact, the proof of
Theorem 2.2 uses only the minimal Stokes–Biot stability condition. This means that
the reduced-quadrature technique can be applied to other discretizations that are
minimal Stokes–Biot stable but not Stokes–Biot stable, e.g., the bubble-enriched P1-
P1-P0 and P2-P1-P0 discretizations. We refer to [44] for further discussion of spaces
that satisfy the minimal Stokes–Biot stability condition.

Remark 2.5. In [65], it has been shown that the reduced-quadrature discretiza-
tion is well-posed independent of the discretization parameters by using the traditional
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Brezzi theory for saddle-point systems [11]. Here, with the help of Stokes–Biot sta-
bility and properly chosen weighted norm, we show that the reduced-quadrature dis-
cretization is well-posed independent of the physical parameters as well. This implies
that the reduced-quadrature approach is parameter-robust and also does not destroy
the approximation properties of the bubble-enriched P1-RT0-P0 discretization [53].

3. Monolithic multigrid. Preconditioners for coupled systems, such as the
reduced-quadrature discretization in (2.8), generally fall into two classes, those based
on block-factorization approaches and those based on monolithic multigrid. The
block-factorization approach was considered for the discretization from [53] in [2];
here, we focus on monolithic multigrid, extending recent studies in [31, 32, 41]. The
defining feature of monolithic multigrid is the use of coupled relaxation schemes that
are crafted to address the block structure of the system, along with a coarse-grid
correction procedure that, again, couples the blocks within the system. Here, we con-
sider geometric multigrid [59], combining coarse-grid correction based on geometric
interpolation operators (modified, as discussed below, to account for divergence-free
functions) with relaxation that aims to damp oscillatory error components on each
grid level. We write the two-grid error-propagation operator as

ETG = Eν2
s ECGCE

ν1
s ,(3.1)

where ν1 and ν2 are the number of pre- and postrelaxation iterations, respectively.
The error-propagation operator for relaxation is Es = I − ωM−1A, where ω is a
damping parameter, and ECGC = I −PA−1

H RA for the coarse-grid correction (CGC)
where P is the multigrid interpolation operator and R is the restriction operator. The
coarse-grid operator, AH , is constructed either by rediscretization or as the Galerkin
operator, RAP . As is typical for monolithic multigrid, the interpolation operator is
determined blockwise, given as

P =

Pu 0 0
0 Pw 0
0 0 Pp

 ,(3.2)

where Pu is the interpolation operator for displacements, Pw is that for the Darcy
velocity, and Pp is the interpolation operator for pressure. We discuss the construc-
tion of Pu below; for Pw and Pp, we use the canonical finite-element interpolation
operators for RT0 and P0. We fix R = PT . While the Galerkin and rediscretization
coarse-grid operators coincide when the canonical finite-element operators are used
for all fields, they will not do so here, due to the use of the divergence-preserving
interpolation for Pu discussed below. Following the geometric multigrid structure, we
use the rediscretization operators instead of Galerkin, primarily because this allows
easy extension from effective two-level solvers to the multilevel case.

To simplify the notation, we rewrite

ARQx =

(
A B⊤

B −C

)(
y
p

)
,(3.3)

where

A =

(
ARQ

u 0
0 τMω

)
, B =

(
αBu τBω

)
, C =

1

M
Mp, and y =

(
u
w

)
.

Next, we detail the nonstandard aspects of our multigrid method, namely the divergence-
preserving interpolation operator and the coupled relaxation schemes.
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3.1. Divergence-preserving interpolation. As recognized in [54, 55, 56] (see
also [20]), a key to achieving solvers for elasticity that are robust in the incompressible
(large λ) limit is the interpolation of divergence-free functions on the coarse mesh to
divergence-free functions on the fine mesh. If uH is a coarse-grid divergence-free
function, then, by the divergence theorem,∫

∂T

n⊤uH ds = 0 ∀T ∈ TH ,

where the subscriptH denotes the coarse grid whose elements form the set TH . Asking
that the prolongation of uH to the fine grid also be divergence-free yields∫

∂T

n⊤(PuuH) ds = 0 ∀T ∈ Th,(3.4)

where we now impose the condition on the fine-mesh elements in Th.
The standard finite-element interpolation operator on the displacement space does

not satisfy this condition. To build an operator that does, we consider the interpo-
lation locally from each coarse-grid element, as pictured in Figure 3.1. The key step
in the construction is to use the finite-element interpolation operator to fix all fine-
mesh DoFs on the edges of the coarse-mesh triangle, and use the three edge DoFs on
the “interior” fine-mesh triangle to enforce (3.4). A columnwise construction of the
interpolation operator is then given by first computing ci = P̂uei, where ei is the
ith canonical unit vector on the coarse mesh, and P̂u is the standard finite-element
interpolation operator. Then, the entries in ci that correspond to the interior bubble
DoFs depicted in Figure 3.1 are replaced by values that ensure satisfaction of (3.4).
Consider the triangle, t1,2,3, in Figure 3.1 with vertices labeled 1, 2, 3. Let cv1,v2b de-
note the entry in ci associated with the bubble DoFs on the edge between vertices
v1 and v2, and let cv denote the entries in ci associated with the x and y DoFs on
vertex v. To make the function represented by ci divergence-free on t1,2,3, we set the
coefficients of the interior bubble DoFs, c1,3b , to cancel that from the remaining DoFs,

c1,3b = −

(
c1,2b + c2,3b +

1

|∂t1,2,3|

3∑
v=1

∫
∂t1,2,3

nT cvλv ds

)
,

where n is the outward normal, and λv is the linear basis function associated with
vertex v. Note that this calculation is simplified by choosing the bubble DoFs to be
defined directly as integrals over the associated edges.

1

2 3

Fig. 3.1. A coarse-mesh element, T ∈ TH , and the four fine-mesh triangles that interpolate from
it. The circles represent the bubble DoFs that are used to satisfy the divergence-free interpolation
condition. The gray fine-grid triangle is referred to as the interior triangle, while the other fine-grid
triangles are the “corner” triangles.
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3.2. Monolithic multigrid relaxation. It is widely recognized that standard
relaxation schemes, such as Jacobi or Gauss–Seidel, are not effective components of a
multigrid algorithm for many saddle-point problems [59]. Instead, several families of
relaxation schemes tailored to this setting have been proposed and studied. Here, we
focus on two classes of such methods, Vanka and Braess–Sarazin relaxation.

3.2.1. Vanka relaxation scheme. Vanka relaxation, originally proposed in
[60], has been adapted for a wide variety of discretizations and saddle-point prob-
lems [1, 37, 39, 42]. At its root, Vanka methods are overlapping block relaxation
schemes, that can be considered in either additive (block-Jacobi) or multiplicative
(block-Gauss–Seidel) form. While multiplicative variants have long been consid-
ered, the additive form has attracted recent interest, due to its natural paralleliza-
tion [18, 19].

Given a decomposition of the set of DoFs into L (overlapping) blocks, a standard
Schwarz method is most easily defined by defining the restriction operator, Vℓ, from
global vectors to local vectors on block ℓ. Then, given a current residual, r(j) =
b−ARQx(j), we can solve the projected system

VℓARQV ⊤
ℓ x̂ℓ = Vℓr

(j)

on each block. The weighted additive form of the relaxation is then

x(j+1) = x(j) + ω
∑
ℓ

V ⊤
ℓ Dℓx̂ℓ,

where ω is a damping parameter and Dℓ is a diagonal weight matrix that is chosen
to compensate for the fact that different (global) DoFs appear in different numbers
of patches. Here, we consider Dℓ to be given by the “natural weights” of the overlap-
ping block decomposition, where each diagonal entry is equal to the reciprocal of the
number of patches that the corresponding DoFs appears in.

The construction of the Vanka blocks is critically important to the success of the
resulting multigrid method, with general principles being well-understood for their
construction in several contexts [5, 19, 42]. Following the construction of the reduced-
quadrature discretization above, our primary concern is in ensuring relaxation suitably
handles the locally supported basis functions for the divergence-free space [54, 55, 56].
Since those basis functions are supported around the nodes of the mesh, as shown in
Figure 2.2, we also use nodal patches for the Vanka blocks; see Figure 3.2. For the
full poroelasticity system, we use the patches shown at right; those at left will be used
within the BSR scheme discussed next.

3.2.2. Braess–Sarazin relaxation schemes. Braess–Sarazin-type algorithms
were originally proposed as relaxation schemes for the Stokes’ equations [10], using
an approximate block factorization as an approximation to the original system. Like
Vanka relaxation, they have also been extended to many discretizations and systems
[1, 31, 32, 37, 39], and are closely related to Uzawa schemes [41]. Using the 2 × 2
block structure in (3.3), given a residual r(j), exact BSR updates the approximation
as (

y(j+1)

p(j+1)

)
=

(
y(j)

p(j)

)
+ ω

(
F B⊤

B −C

)−1

r(j),(3.5)

where F is an approximation of A, often taken to be ωbI or ωbdiag(A), with weight
ωb chosen to separately damp the correction to the variables in y from that given by
the global parameter, ω.
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Fig. 3.2. Choices of DoFs for blocks within Vanka relaxation on the displacement subsystem
(left) and full poroelasticity system (right). In both figures, filled circles and squares denote the DoFs
associated with the linear component of the displacement, while empty circles show the bubble DoFs.
At right, asterisks are used to denote the RT0 DoFs for the Darcy velocity space, and triangles
denote the P0 DoFs for the pressure space.

The matrix inversion in (3.5) can be carried out in two stages as solving

Sδp = BF−1r(j)y − r(j)p ,(3.6)

Fδy = r(j)y −B⊤δp,

where S = C+BF−1B⊤, and r
(j)
y and r

(j)
p are the first and second block components

of r(j) in this decomposition. In exact BSR, there is a significant cost associated
with the inversion of the Schur complement, S, in (3.6). For this reason, inexact BSR
methods were proposed, where the exact solution of the Schur complement equation
is replaced by a suitable iterative method applied to (3.6), typically given by a few
steps of a relaxation scheme or of a multigrid cycle for that subsystem.

Here, we make use of the block structure of A, to note that

BA−1B⊤ = α2Bu

(
ARQ

u

)−1
B⊤

u + τBwM
−1
w B⊤

w,

and that, particularly in the large λ limit, Bu(A
RQ
u )−1B⊤

u is well-approximated by
a scaled mass matrix on the pressure space. This idea is motivated by the inf-sup
condition (2.9) and is, essentially, the well-known “fixed-stress” approximation [38].
Thus, we first approximate

S ≈ 1

M
Mp +

α2

λ+ 2µ/d
Mp + τBwD

−1
w B⊤

w,

where Dw is the diagonal of Mw, and refer to the method with exact inversion of this
system in (3.6) as exact BSR. This is in combination with a single sweep of a Jacobi
iteration on Mw to approximate the w component of y, and a single iteration of the
Vanka relaxation with patches chosen as shown at left of Figure 3.2 to approximate
the inversion of ARQ

u to approximate the u component of y. For inexact BSR, we
replace the exact solve with the approximation to S by a single sweep of weighted
Jacobi (with relaxation weight ωJ) on (3.6).

A downside of these relaxation schemes is their dependence on multiple relaxation
parameters in their component parts. While some general principles exist to help us
choose those parameters, often they are fixed by expensive brute-force testing. Here,
we will make use of LFA to make these choices.

4. Local Fourier analysis. LFA is a common and useful tool to predict and
analyze actual performance of algorithms for the solution of discretized PDEs [59, 62].
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In particular, it has been used to analyze the construction and optimization of the
components of a multigrid algorithm, such as relaxation schemes and grid-transfer
operators [29, 31, 32, 33, 41, 42]. In this paper, we apply the LFA framework developed
in [29, 31, 32, 42] to monolithic multigrid methods for the discretized Biot model in
(2.8), in order to optimize the relaxation parameters described above.

4.1. Two-grid LFA. Following [59, 62], we first consider two-dimensional infi-
nite uniform grids, Gh =

{
x := (x1, x2) = (k1, k2)h, (k1, k2) ∈ Z2

}
. Let Lh be a

scalar Toeplitz operator defined as Lhwh(x) =
∑

κ∈S sκwh(x+κh), κ = (κ1, κ2) ∈ S,
with constant coefficients sκ ∈ R (or C), and where wh(x) is a function in l2(Gh).
Here, S ⊂ Z2 is a finite index set over which the stencil is nonzero. Because Lh

is formally diagonalized by the Fourier modes φ(θ,x) = eιθ·x/h = eιθ1x1/heιθ2x2/h,
where θ = (θ1, θ2), we use φ(θ,x) as a Fourier basis with θ ∈ [−π

2 ,
3π
2 )2 (or any pair

of intervals with length 2π). High and low frequencies for standard coarsening (as
considered here) are given by

θ ∈ T low =
[
−π
2
,
π

2

)2
, θ ∈ T high =

[
−π
2
,
3π

2

)2∖[
−π
2
,
π

2

)2
.

Definition 4.1. If for all grid functions φ(θ,x), Lhφ(θ,x) = L̃h(θ)φ(θ,x), we

call L̃h(θ) =
∑

κ∈S sκe
ιθ·κ the symbol of Lh.

For simple scalar operators (such as second-order finite-difference or finite-element
discretizations of constant-coefficient diffusion equations), the performance of a stan-
dard relaxation method, such as the weighted Jacobi or Gauss–Seidel iterations, is
easily analyzed by considering the symbol of the relaxation scheme [59, 62]. From the
heuristic argument that coarse-grid correction effectively reduces error in T low, the
LFA smoothing factor for a relaxation scheme with error-propagation operator given
by I − ωM−1

h Lh is introduced as µ = supθ∈Thigh |1 − ωM̃h(θ)
−1L̃h(θ)|, where ω is a

damping parameter.
While the LFA smoothing factor provides excellent predictions of true multigrid

performance for simple discretizations of simple operators, it is known to provide poor
predictions when used on complicated or higher-order operators [33]. In such settings,
it is more reliable to use the two-grid LFA convergence factor, which takes into account
the coarse-grid correction process. To do this, we define the harmonic modes by
taking θα = (θα1

1 , θα2
2 ) = θ00 + π · α, α = (α1, α2) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)},

and θ00 ∈ T low. That is, for each low-frequency mode θ ∈ T low, we define a four-
dimensional harmonic space, F(θ) = span{φ(θα, ·) : α ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}},
which is invariant for standard full-coarsening two-grid algorithms.

To compute the LFA two-grid convergence factor, we must obtain an LFA repre-
sentation of all components of the multigrid cycle. This requires finding symbols for
not just the fine-grid operator and relaxation scheme, but also for the interpolation
and restriction operators, and for the coarse-grid operator. The symbol of the two-grid
algorithm is a 4 × 4 matrix that describes the action of the two-grid algorithm, and
comes from noting that structured constant-coefficient interpolation and restriction
operators map naturally between the four fine-grid harmonic modes in F(θ) and the

coarse-grid mode 2θ. Writing L̃2h for the symbol of the coarse-grid operator and P̃h

and R̃h for the symbols of the interpolation and restriction operators, the Fourier
representation of the two-grid error-propagation operator is defined as
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ẼTG(θ) = Ẽν2
s (θ)

(
I − P̃h(θ)(L̃2h(2θ))

−1R̃h(θ)L̃h(θ)
)
Ẽν1

s (θ),

where

L̃h(θ) = diag
{
L̃h(θ

00), L̃h(θ
10), L̃h(θ

01), L̃h(θ
11)
}
,

Ẽs(θ) = diag
{
Ẽs(θ

00), Ẽs(θ
10), Ẽs(θ

01), Ẽs(θ
11)
}
,

R̃h(θ) =
(
R̃h(θ

00), R̃h(θ
10), R̃h(θ

01), R̃h(θ
11)
)
,

P̃h(θ) =
(
P̃h(θ

00); P̃h(θ
10); P̃h(θ

01); P̃h(θ
11)
)
.

Here, diag{T1, T2, T3, T4} denotes the block-diagonal matrix with diagonal blocks,
T1, T2, T3, and T4 [59, 62]. With this, we define the two-grid LFA convergence factor.

Definition 4.2. The two-grid LFA convergence factor, ρLFA, is defined as

ρLFA = sup
{
ρ(ẼTG(θ) : θ ∈ T low

}
,(4.1)

where ρ(ẼTG(θ)) denotes the spectral radius of matrix ẼTG(θ).

As described above, it is natural to introduce algorithmic parameters when de-
signing multigrid methods for complicated problems. It is for this purpose that we
introduce LFA here. While it is often possible to optimize the LFA smoothing factor
for simple problems through analytical means (see, for example, [31]), optimizing the
two-grid LFA convergence factor for more complicated problems and algorithms is
a challenging task [12]. Here, we will develop LFA representations of the monolithic
multigrid algorithms above and optimize the two-grid convergence factor in (4.1) using
brute-force sampling. In particular, while the true two-grid LFA convergence factor is
most naturally defined as a supremum over a continuous range of values of θ, we will
use a discrete sampling at a finite number of evenly spaced frequencies in the domain
(−π

2 ,
π
2 ]

2, but without any change of notation.

4.2. LFA representation of discretized system. To extend Fourier analysis
to the full discretized system in (2.8), we must account for the fact that the system
is not readily extended to a Toeplitz operator on an infinite grid, unlike in the scalar
case. This occurs in two ways. First, as is clear, the discretization of a coupled system
of PDEs leads, at best, to a block operator with Toeplitz blocks. Second, even within
a single block, such as ARQ

u , there are different “types” of DoFs, leading to nested
block-Toeplitz structure.

The key concept in enabling LFA is in expressing the block-Toeplitz structure of
the multigrid hierarchy and relaxation operator relative to the infinite grid, Gh. With
triangular cells and face- and cell-based DoFs, this is slightly nonintuitive. Figure 4.1
shows the DoFs in a typical pair of elements on the mesh, constructed by “cutting” a
quadrilateral cell into two triangles. With this arrangement of DoFs, we have natural
periodic structure for the P1 components of the displacement (2 DoFs, 1 for each
component of the two-dimensional displacement vector, u), but also for the 6 face-
based DoFs, coming in two pairs of 3 DoFs, corresponding to the normal displacement
bubble component along each face and the face-based Raviart–Thomas DoFs for the
Darcy velocity. Note that we do not “collapse” the Fourier representation of the
face-based DoFs to a single component within the symbol; this is not possible, since
the matrix connections between face-based DoFs along (for example) horizontal edges
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Fig. 4.1. Cut quadrilateral mesh cell showing DoFs. Filled circles and squares denote the DoFs
associated with the linear component of the displacement, while empty circles show the bubble DoFs.
Asterisks are used to denote the RT0 DoFs for the Darcy velocity space, and triangles denote the
P0 DoFs for the pressure space.

will be different from those along diagonal edges. Instead, we will maintain an entry
in the Fourier symbol for each “type” of face-based DoF. Similarly, the connections
between the P0 DoFs in the lower-left triangles and the other variables in the cell
may be different from those with the P0 DoFs in the upper-right triangles. Thus,
we introduce Fourier representations of both of these DoFs. In total, this yields
a 10 × 10 block Fourier symbol for the operator, ARQ. With this structure, it is a
straightforward (but tedious) task to compute the Fourier symbol of ARQ. We outline
the main ideas here, but leave the technical details to the Supplementary Material
(to supp.pdf [local/web 341KB]) for the interested reader.

First, we “expand” its block structure from the canonical 3× 3 form to that of a
10×10 block-structured linear system, with 1 block for each DoF identified above and
in Figure 4.1. In this ordering, each diagonal block is a Toeplitz matrix, whose symbol
can be calculated according to Definition 4.1. Off-diagonal blocks in this structure are
also Toeplitz matrices, although we also account for the offsets between DoF locations
in the mesh in the Fourier symbols, in a similar manner to what was done in [31, 32].
Details of these calculations are presented in section SM1.

Similarly, Fourier representations of the grid-transfer operators can also be com-
puted in block form. Taking the block-diagonal interpolation operator from (3.2), we
separately compute Fourier representations of each interpolation operator, accounting
for block structure of the DoFs and the details of the interpolation schemes. Since we
have a 10-dimensional space associated with each Fourier frequency, and interpolation
and restriction map between four harmonic frequencies on the fine mesh and a single
frequency on the coarse mesh, this results in a 40× 10 symbol for interpolation and a
10×40 symbol for restriction, which can be broken into 10×10 blocks giving the part
of the symbol associated with each individual frequency in the harmonic set. These
10×10 blocks can be broken down further, based on the block-diagonal form in (3.2),
to a 5× 5 block associated with displacements, a 3× 3 block for Darcy velocities, and
a 2×2 block for pressures. It is somewhat more natural to compute Fourier represen-
tations of the restriction operators and use (scaled) transposes of these symbols for
interpolation, which is the approach followed in section SM2.

Finally, Fourier representations of the relaxation schemes can be computed. For
Vanka relaxation, this follows the approach presented in [18], where the Fourier rep-
resentation of a residual at given frequency is restricted, via Vℓ, to a Vanka patch,
and the action of the local solve is computed exactly on this basis, with accounting
for the overlap between patches. Details are given in section SM3. For Braess-Sarazin
relaxation, the symbols of F , S and the approximation to S are readily computed in
the same manner as the symbols above, and the incorporation of a relaxation scheme
in place of an exact inversion of S is done similarly. See section SM4 for the details.
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4.3. Validation and optimization. While we are primarily interested in the
use of monolithic multigrid as a preconditioner for GMRES, we begin by studying
its use as a stationary iteration, for the purposes of optimizing parameters in the
methods. We use LFA to predict convergence factors associated with given choices of
parameters, and compare to measured performance of a stationary iteration, approxi-

mating the asymptotic convergence factor of the iteration as ρN = ∥r(j)∥
∥r(j−1)∥ , where r

(j)

is the residual at the jth iteration. To ensure a good approximation of the asymptotic
convergence factor, iterations are run until the change in the measured convergence
factor between iterations is less than 10−3. While LFA can be made exact in the case
of periodic boundary conditions, the numerical tests were performed using Dirichlet
boundary conditions as is more common. We consider Ω = [0, 1]2 covered with a
uniform triangular grid with mesh spacing h = 1/64. As a test problem, we consider
a zero right-hand side, with a random initial guess for a single time step with τ = 1.
To demonstrate the impact of the physical parameters, the permeability, K, and the
Poisson ratio ν are varied. In all test cases, we consider a diagonal permeability tensor
K = kI. Additionally, α = 1, µf = 1, M = 106, and E = 3× 104. LFA is performed
using 32 evenly spaced sample points in each coordinate direction, offset so that no
sample is taken at the origin in Fourier space. Note that the two-grid LFA conver-
gence factor, (4.1), is a function of the damping parameter, ω. In order to obtain
an efficient algorithm, we use brute-force sampling to optimize the LFA-predicted
two-grid convergence factors over choices of ω, with steps of size 0.02.

In Tables 4.1 and 4.2, we present LFA-optimized parameters and both LFA-
predicted and numerically measured two-grid convergence factors for monolithic multi-
grid using Vanka (with ν1 = ν2 = 2) and inexact BSR schemes (with ν1 = ν2 = 1),
respectively. To validate the parameters for inexact BSR, we first perform LFA for

Table 4.1
Optimized relaxation parameter (ωopt), observed convergence factor (ρN ) with Dirichlet bound-

ary conditions, and optimal two-grid LFA predictions (ρLFA) for additive Vanka relaxation (ν1 =
ν2 = 2) on the full system with the 20-DoF vertex-based patch (Figure 3.2, right), varying k and ν.

ν
k

1 10−2 10−4 10−6 10−8 10−10

ν = 0 ωopt 0.92 0.92 0.92 0.92 0.88 0.76
ρLFA 0.705 0.705 0.705 0.702 0.490 0.552
ρN 0.722 0.722 0.722 0.722 0.475 0.547

ν = 0.2 ωopt 0.90 0.90 0.90 0.90 0.86 0.76
ρLFA 0.624 0.624 0.624 0.622 0.474 0.557
ρN 0.610 0.610 0.610 0.611 0.468 0.552

ν = 0.4 ωopt 0.80 0.80 0.80 0.80 0.78 0.76
ρLFA 0.410 0.410 0.410 0.410 0.436 0.562
ρN 0.403 0.403 0.403 0.404 0.432 0.557

ν = 0.45 ωopt 0.76 0.76 0.76 0.76 0.76 0.76
ρLFA 0.492 0.492 0.492 0.492 0.498 0.564
ρN 0.489 0.489 0.489 0.489 0.495 0.560

ν = 0.49 ωopt 0.74 0.74 0.74 0.74 0.74 0.76
ρLFA 0.572 0.572 0.572 0.572 0.572 0.573
ρN 0.569 0.569 0.569 0.570 0.570 0.569

ν = 0.499 ωopt 0.72 0.72 0.72 0.72 0.72 0.74
ρLFA 0.600 0.600 0.600 0.600 0.600 0.599
ρN 0.596 0.596 0.596 0.596 0.596 0.596
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Table 4.2
Optimized relaxation parameters (ωJ,opt, ωopt), observed convergence factor (ρN ) with Dirichlet

boundary conditions, and optimal two-grid LFA predictions (ρLFA) for inexact BSR (using one
sweep of damped Jacobi for the approximate solve of the Schur complement and additive Vanka for
the displacement block), varying k and ν.

ν
k

1 10−2 10−4 10−6 10−8 10−10

ν = 0 ωJ,opt 1.10 1.15 1.06 1.26 0.98 0.96
ωopt 0.72 0.68 0.76 0.62 0.88 0.98

ρLFA 0.648 0.649 0.656 0.645 0.556 0.417
ρN 0.647 0.646 0.650 0.636 0.535 0.552

ν = 0.2 ωJ,opt 1.30 1.23 1.00 0.97 1.14 0.95
ωopt 0.60 0.62 0.71 0.82 0.73 1.07

ρLFA 0.660 0.652 0.683 0.647 0.568 0.435
ρN 0.652 0.620 0.682 0.616 0.578 0.418

ν = 0.4 ωJ,opt 1.27 1.16 1.17 0.94 1.18 0.79
ωopt 0.69 0.74 0.74 0.74 0.77 1.14

ρLFA 0.684 0.663 0.670 0.690 0.659 0.509
ρN 0.680 0.655 0.659 0.654 0.658 0.507

ν = 0.45 ωJ,opt 1.16 1.07 1.10 0.91 1.26 0.76
ωopt 0.72 0.72 0.72 0.72 0.74 1.17

ρLFA 0.732 0.732 0.732 0.732 0.732 0.570
ρN 0.723 0.723 0.723 0.722 0.731 0.567

ν = 0.49 ωJ,opt 1.21 1.27 1.07 1.18 1.29 1.06
ωopt 0.69 0.69 0.69 0.69 0.69 1.00

ρLFA 0.772 0.772 0.772 0.772 0.772 0.688
ρN 0.757 0.757 0.757 0.757 0.741 0.681

ν = 0.499 ωJ,opt 0.85 1.29 1.00 0.86 0.85 1.42
ωopt 0.68 0.68 0.68 0.68 0.68 0.73

ρLFA 0.786 0.786 0.786 0.786 0.786 0.772
ρN 0.783 0.783 0.783 0.783 0.783 0.751

the exact BSR scheme discussed above (not shown here). For values of ν larger than
0.4, we find identical performance between exact and inexact BSR, except for the case
of k = 10−10, where inexact BSR slightly outperforms exact BSR for ν = 0.45. Ex-
act BSR performance notably improves as ν decreases, achieving convergence factors
around 0.48 for ν = 0 and larger values of k. While this is a slight improvement in
convergence over the inexact BSR case, it relies on the prohibitively expensive exact
inversion of the approximate Schur complement. Note that we also optimize for the
Jacobi weight, ωJ , for approximately solving the Schur complement.

In general, we see good agreement between the LFA predictions and the measured
factors, and that the two-grid schemes are robust to both the incompressible limit,
ν → 0.5, and extremely small values of k. We note some irregularity in both the
convergence factors themselves and the match between prediction and measurement
in the small k limit, which appears to be due to ill-conditioning of the Fourier symbols
when k is so small. This also leads to some irregularity in the optimal relaxation
parameters also in this limit.

In these tests, we focus on the optimization of only the outer relaxation parame-
ter, ω, using LFA. While it is possible to introduce more relaxation parameters (e.g.,
in the inner Vanka relaxation for inexact BSR, or the weighting matrix, Dℓ), prelim-
inary experiments showed that these did not greatly improve convergence. It is also
important to note both that the optimal relaxation parameter varies with ν and that
good choices for one value of ν do not lead to good performance across all values
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considered here. With Vanka relaxation, for fixed ω = 0.9 (close to the optimal value
for ν = 0), we see divergence for all tested values of ν > 0.2. For fixed ω = 2/3 (close
to the optimal value for ν → 1/2), we see strong degradation in convergence as ν gets
small, with divergence for all tested values of ν < 0.49. We also note that, because
these relaxation weights are used in multiplicative combination with coarse-grid cor-
rection, the performance of multigrid-preconditioned FGMRES, as is considered in
section 5, is also sensitive to these choices.

5. Numerical results. We now consider performance of the reduced-quadrature
discretization and the monolithic multigrid preconditioners, extending the two-level
results shown above to the multilevel case. To allow fair comparison between the
relaxation schemes, we have implemented both Vanka and inexact BSR in a single
codebase, namely the HAZmath package [4]: a simple finite element, graph, and solver
library. All timed numerical results are done using a workstation with an 8-core 3-
GHz Intel Xeon Sandy Bridge CPU and 256 GB of RAM. This also allows direct
comparison to timings for the block preconditioners from [2].

5.1. Steady-state model. Here, we use a single four-level V-cycle of the mono-
lithic multigrid method as a preconditioner for FGMRES using a relative residual stop-
ping tolerance of 10−6 and compare the performance with the block upper-triangular
preconditioner previously used in [2], with form

BU =


ARQ

u αB⊤
u 0

0
(

α2

ζ2 + 1
M

)
Mp −τBw

0 0 τMw + τ2
(

α2

ζ2 + 1
M

)−1

Aw

 .(5.1)

Notice that (5.1) is applied to a permuted form of the discretization, as was considered
in [2]. Similar to [2], each diagonal block in the preconditioner is solved to a relative
residual tolerance of 10−3 using preconditioned FGMRES preconditioned with alge-
braic multigrid for the pressure and Darcy blocks and FGMRES preconditioned with
geometric multigrid using the Vanka relaxation presented in subsection 3.2.1 for the
displacement block.

In this example, the right-hand-side functions g and f are chosen so that the
exact solution is given by

u(x, y, t) = curlφ =

(
∂yφ
−∂xφ

)
, φ(x, y) = [xy(1− x)(1− y)]2,

p(x, y, t) = 1, w(x, y, t) = 0.

The material parameters are the same as those used in the LFA validation above.
Finally, starting with a zero initial guess, we set τ = 1 and tmax = 1, so that we only
perform one time step, and fix the mesh spacing to be h = 1/64 (the four-level V-cycle
has a direct solve on the coarse mesh with spacing h = 1/8). Table 5.1 presents results
for monolithic multigrid with both Vanka and inexact Braess–Sarazin relaxation, and
for the block preconditioner.

There are several takeaways from these results. First, the monolithic multigrid
with Vanka relaxation method is robust with respect to the physical parameters,
though we do see a slight degradation for small ν (i.e., the compressible case). This
is not surprising, as the methods developed here were developed specifically for the
limit as ν approaches 1/2. Second, the multilevel monolithic multigrid with inexact
BSR relaxation struggles when the permeability constant k is small, in contrast to the
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Table 5.1
CPU time in seconds (and iterations to convergence) for FGMRES preconditioned by monolithic

multigrid with additive Vanka relaxation on the full system with the 20-DoF vertex-based patch
(Figure 3.2, right) and inexact BSR, and preconditioned by a block upper-triangular system from [2]
on steady-state problem.

Scheme
ν

k
1 10−2 10−4 10−6 10−8 10−10

Vanka 0.0 2.417 (18) 1.966 (18) 2.037 (18) 2.049 (18) 1.029 (10) 1.002 (10)
BSR 0.0 0.457 (9) 0.458 (9) 0.451 (9) 0.613 (12) 0.502 (10) 0.459 (9)
Block 0.0 0.733 (16) 0.738 (16) 0.845 (16) 0.611 (13) 0.499 (12) 0.415 (8)
Vanka 0.2 1.863 (15) 1.605 (15) 1.544 (15) 1.550 (15) 1.025 (10) 1.103 (10)
BSR 0.2 0.615 (12) 0.561 (11) 0.667 (10) 0.556 (11) 0.454 (9) 0.507 (10)
Block 0.2 0.695 (15) 0.698 (15) 0.718 (15) 0.637 (12) 0.484 (11) 0.448 (8)
Vanka 0.4 1.095 (9) 1.027 (9) 1.000 (9) 0.923 (9) 1.006 (9) 1.089 (10)
BSR 0.4 0.554 (11) 0.608 (12) 0.758 (15) 0.664 (13) 1.124 (22) 0.658 (13)
Block 0.4 0.784 (15) 0.785 (15) 0.834 (15) 0.850 (13) 0.596 (11) 0.516 (9)
Vanka 0.45 1.091 (9) 0.921 (9) 1.003 (9) 0.922 (9) 1.018 (10) 0.944 (10)
BSR 0.45 0.658 (13) 0.844 (13) 0.921 (14) 0.763 (15) 28.5 (452) 0.819 (16)
Block 0.45 1.047 (15) 1.047 (15) 1.521 (16) 1.443 (15) 0.876 (12) 0.742 (11)
Vanka 0.49 1.347 (11) 1.142 (11) 1.121 (11) 1.128 (11) 1.125 (11) 0.957 (11)
BSR 0.49 0.917 (18) 0.911 (18) 0.971 (19) 0.966 (19) 17.4 (299) 1.126 (22)
Block 0.49 1.081 (15) 1.080 (15) 1.073 (15) 1.833 (16) 1.184 (12) 1.094 (11)
Vanka 0.499 1.565 (13) 1.354 (13) 1.318 (13) 1.318 (13) 1.437 (13) 1.187 (14)
BSR 0.499 1.221 (24) 1.163 (23) 1.220 (24) 1.656 (26) 1.341 (24) 2.808 (55)
Block 0.499 2.142 (15) 2.140 (15) 2.146 (15) 2.144 (15) 2.194 (16) 2.099 (15)

robust two-level results in section 4. It may be that W-cycles, or other approaches,
are needed to achieve robustness in this case, but we do not investigate this here.
Note, however, that for larger k, the total computational time when using inexact
BSR is slightly faster than that for Vanka relaxation. Comparing the monolithic
multigrid performance with that of the block preconditioner, we see that the block
preconditioner performance is similar to that of the monolithic multigrid with inexact
BSR for small ν. However, there is a clear degradation in performance of the block
preconditioner in the incompressible limit, where monolithic multigrid is more robust.
Since the degradation in CPU time is much worse than that in iteration count, we
infer that the required iterations of the inner (block) solvers must be increasing in
this limit.

To verify that the reduced-quadrature formulation does accurately approximate
the problem, we perform a convergence study of the finite-element discretization with
respect to the mesh size, given by h = 1/(N − 1), where N is the number of vertices
in each dimension. Here, we set τ = 1.0 and k = 10−6 as an example, with results
shown in Figure 5.1 for ν = 0.4 and ν = 0.499. The displacement displays a first-order
convergence with respect to the H1-seminorm, as expected, with no difference in error
values for the different values of ν. The pressure displays second-order convergence
despite only using P0 elements, with slight improvement as ν → 0.5. This supercon-
vergence is due to having a very smooth solution (p is a constant) and using a uniform
mesh. Additionally, Figure 5.2 shows that the monolithic multigrid approach (with
exact solve on a coarsest mesh with h = 1/8) with either the Vanka or inexact BSR
relaxation methods follows the expected O(N2 log(N2)) scaling in CPU time with re-
spect to problem size, even as ν → 0.5. We note that while iterations to convergence
are independent of problem size for both values of ν when using Vanka relaxation,
degradation to O(log(N2)) iterations is seen for BSR relaxation as ν → 0.5. These
results further indicate the better performance of Vanka as ν → 0.5, and the loss of
robustness in ν for multilevel BSR.
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Fig. 5.1. Convergence study for steady-state problem, using FGMRES preconditioned by mono-
lithic multigrid with the additive Vanka relaxation scheme using ν = 0.4 and ν = 0.499. Left:
H1-seminorm error for displacement versus mesh size. Right: L2-error for pressure versus mesh
size.
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Fig. 5.2. CPU time in seconds (at left) and iterations to convergence (at right) for FGMRES
preconditioned by a monolithic multigrid V-cycle with additive Vanka and inexact BSR relaxation
schemes versus mesh size on steady-state problem for ν = 0.4 and ν = 0.499.

5.2. Smooth test problem. We next consider a slightly more realistic test
problem, now with a time-dependent smooth solution, taken from [27]. The manu-
factured solution is defined on Ω = [0, 1]2 as

u(x, y, t) = e−t

 sin(πy)
(
− cos(πx) + 1

µ+λ
sin(πx)

)
sin(πx)

(
cos(πy) + 1

µ+λ
sin(πy)

)  ,

p(x, y, t) = e−t sin(πx) sin(πy),

w(x, y, t) = −k∇p,
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with right-hand sides chosen appropriately. We consider Dirichlet boundary condi-
tions on all sides for displacement and pressure. The physical parameters are α = 1,
µf = 1, M = 106, and E = 3 × 104. We perform all simulations from time t = 0 to
t = 0.5. Here, we use a relative residual stopping tolerance for FGMRES of 10−10, as
preliminary experiments showed that this was needed to accurately resolve the pres-
sure solution. Moreover, we only consider the additive Vanka method, as it proved
more robust in the multilevel setting. Additionally, as we are mostly concerned with
the incompressible limit, we focus on values of the Poisson ratio above 0.4.

Parameter robustness for the solver is demonstrated in Table 5.2, showing the
average solver iteration count and average CPU time over 64 time steps with time
step size τ = 1/128. The mesh spacing is fixed to h = 1/64, and the values of k
and ν are varied. Robustness with respect to discretization parameters, h and τ , is
shown in Figure 5.3, for k = 10−6 and both ν = 0.4 and ν = 0.499. We test on
meshes with N = 2ℓ + 1, for ℓ = 4 to 8, with τ = 2−m for m = 4 to 8. Here, we see
nearly identical CPU times with expected O(N2 log(N2)) scaling for all values of τ .
The corresponding LFA parameters from Tables 4.1 and 4.2 are used. The averaged
iteration counts (not shown here) remain consistently in the range of 13 to 16 across
all parameter values.

Table 5.2
Average CPU time in seconds (iterations) over 64 time steps for FGMRES preconditioned by

monolithic multigrid with an additive Vanka relaxation scheme for the smooth solution problem with
varying physical parameters k and ν.

ν
k

1 10−2 10−4 10−6 10−8 10−10

0.4 1.536 (14.0) 1.521 (14.0) 1.543 (14.0) 1.520 (14.0) 1.679 (16.0) 1.506 (14.0)
0.45 1.431 (13.0) 1.402 (13.0) 1.404 (13.0) 1.525 (14.0) 1.441 (14.0) 1.467 (14.0)
0.49 1.536 (14.0) 1.518 (14.0) 1.513 (14.0) 1.513 (14.0) 1.344 (14.0) 1.294 (14.0)
0.499 1.663 (15.0) 1.628 (15.0) 1.622 (15.0) 1.620 (15.0) 1.312 (14.0) 1.331 (15.0)

17 33 65 129 257
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ν = 0.499

τ = 1/16

τ = 1/32

τ = 1/64

τ = 1/128

τ = 1/256

O(N2 log(N2))

Fig. 5.3. Average CPU time in seconds for FGMRES preconditioned by monolithic multigrid
for the smooth solution problem with k = 10−6 and ν = 0.4 (at left) and 0.499 (at right) with varying
discretization parameters, N and τ .
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Fig. 5.4. Convergence study for smooth solution problem, using FGMRES preconditioned by
monolithic multigrid with the additive Vanka relaxation scheme for ν = 0.4 and ν = 0.499 and
τ = h = 1

N−1
. Left: H1-seminorm error for displacement versus mesh size. Right: L2-error for

pressure versus mesh size.

Again, to validate the discretization, we show finite-element convergence with
respect to mesh size and time step size in Figure 5.4, fixing h = τ , with k = 10−6

and both ν = 0.4 and ν = 0.499. Expected O(h+ τ) convergence is seen for both the
H1-seminorm of u and the L2 norm of p.

5.3. Terzaghi’s problem. Finally, we consider a standard benchmark in poroe-
lasticity. The Terzaghi consolidation problem models a fluid-saturated column of a
poroelastic material subject to a loading force on the top [57, 58]; the cylinder height
and width are 1.0, so, once again we take Ω = [0, 1]2. The physical parameters are
α = 1, µf = 1, and E = 3 × 104, but we take M = ∞ as the Biot modulus. This
means that the diagonal block of ARQ corresponding to the pressure is zero, resulting
in vertex-based Vanka blocks that are difficult to invert. To resolve this, a small pos-
itive weight of 10−8 is added to the diagonal of the Vanka blocks. This test problem
has an analytical solution defined by an infinite series,

u(x, y, t) =
p0

λ+ 2µ

 1− x−
∞∑
i=0

8
π2

1
(2i+1)2

e−(2i+1)2π2k(λ+2µ)t/4 cos
(

(2i+1)πx
2

)
0

 ,

p(x, y, t) =
4p0
π

∞∑
i=0

1

(2i+ 1)
e−(2i+1)2π2k(λ+2µ)t/4 cos

(
(2i+ 1)πx

2

)
,

w(x, y, t) = −k∇p,

with initial conditions u(x, y, 0) = 0 and p(x, y, 0) = p0 = 1.0. The problem is
designed to have 0 as the right-hand side.

Parameter robustness for the monolithic multigrid solver is demonstrated in Ta-
ble 5.3, showing the average solver FMGRES iteration count and average CPU time
over 10 time steps using the additive Vanka relaxation applied to the whole system
with the 20-DoF vertex-based patch (Figure 3.2, right). A relative residual stopping
tolerance of 10−6 is used, with mesh spacing fixed to h = 1/64, and the values of k
and ν are varied. Due to the wide range of physical parameters considered, there is
no reasonable single time step size for use with all parameter combinations. Thus,
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Table 5.3
CPU time in seconds (iterations) per time step, averaged over 10 time steps with τ = τ̂/100

and h = 1/64 for FGMRES preconditioned by monolithic multigrid with additive Vanka relaxation
for the Terzaghi problem with varying physical parameters k and ν.

ν
k

10−4 10−6 10−8 10−10

0.4 0.796 (7.3) 0.803 (7.3) 0.796 (7.3) 0.802 (7.3)
0.45 0.827 (7.6) 0.828 (7.6) 0.828 (7.6) 0.822 (7.6)
0.49 0.903 (8.7) 0.900 (8.7) 0.898 (8.7) 0.903 (8.7)
0.499 1.378 (14.5) 1.367 (14.5) 1.376 (14.5) 1.372 (14.5)
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Fig. 5.5. Average CPU time in seconds (top) and iterations to convergence (bottom) per time
step over time interval [0, τ̂/10] for FGMRES preconditioned by monolithic multigrid with additive
Vanka relaxation for the Terzaghi problem. Here, k = 10−6 and ν = 0.4 (left) and 0.499 (right).

we determine a parameter-dependent time scale, τ̂ = 1
0.25π2k(λ+2µ) , derived from the

form of the time-dependence in the analytical solution. All tests below simulate from
time t = 0 to t = τ̂ /10. Note that this physical time step size can vary over several
orders of magnitude as we vary k and ν, thus the optimal parameters for the steady-
state model problem may not be suitable here, so these parameters were recomputed
for the Terzaghi problem. Additionally, large values of permeability are not realistic
for this type of test problem, so we only consider values of k in the range 10−4 to
10−10. The results in Table 5.3 highlight the robustness of the monolithic multigrid
method as well as the utility of the LFA relaxation parameter predictions.
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In Figure 5.5, we explore the robustness with respect to the time step size, τ , and
mesh size (number of points in one direction), N , with h = 1/(N − 1), for k = 10−6

and both ν = 0.4 and ν = 0.499, for monolithic multigrid using Vanka relaxation as
described above. Note that with a smaller time step size, more time steps are needed
to get to the same final time. In all cases, the iteration counts remain stable (no worse
than O(ln(N2))), and the computational time scales as O(N2 log(N2)).

6. Conclusions. In this paper, we investigate the construction of parameter-
robust preconditioners for three-field models of Biot poroelasticity. Following [2, 53],
we consider a bubble-enriched P1-RT0-P0 finite-element discretization; however, in
order to allow for robust solvers, we introduce a reduced-quadrature approximation
and show that the discretization quality does not suffer from this change. With this,
and suitable treatment of divergence-free displacements in both the relaxation and
interpolation operators, we derive robust monolithic multigrid methods to solve this
problem, with both Vanka and inexact Braess–Sarazin relaxation schemes. In nu-
merical tests, we see that the additive form of Vanka relaxation is more robust than
inexact Braess–Sarazin. Both approaches outperform the block-triangular precondi-
tioner of [2], particularly in the incompressible limit. Improving robustness of inexact
BSR in the small permeability and nearly incompressible limits is an interesting ques-
tion for future work.

Another natural topic for future work is extending the preconditioners developed
here for the “bubble-eliminated” system described in [2, 53], where an approximate
Schur complement is used to remove the face-based displacement DoFs. Addition-
ally, more complicated models of poroelasticity will be considered, including their
implementation for three-dimensional models, and for nonlinear models that describe
porous materials with fractures, see [13, 23, 24, 50] and references therein. Developing
robust multigrid solvers for the linearizations of these systems will aid in the devel-
opment of fast simulations for real-world problems in the geosciences and biomedical
research.
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