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Abstract. This paper develops a nested iteration algorithm to solve time-dependent nonlinear
systems of partial differential equations. For each time step, Newton’s method is used to form ap-
proximate solutions from a sequence of nested spaces, where the resolution of the approximations
increases as the algorithm progresses. Nested iteration results in most of the iterations being per-
formed on coarser grids, where minimal work is needed to reduce error to the level of discretization
error. The approximate solution on a given coarse grid is interpolated to a refined grid and is used
as an initial guess for the problem posed there. The approximation is then already close enough
to the solution on the current grid that a minimal amount of work is needed to solve the refined
problem due to the rapid convergence of Newton’s method near a solution. The paper develops an
algorithm that attempts to optimize accuracy-per-computational-cost on each grid, so that essen-
tially no unnecessary work is done on any grid. The nested iteration algorithm is then applied to a
reduced two-dimensional model of the incompressible, resistive magnetohydrodynamic (MHD) equa-
tions. Using this algorithm on the MHD equations in the context of a first-order system least squares
finite element discretization and algebraic multigrid to solve the linearized systems, instabilities in
a model tokamak fusion reactor are simulated. Numerical results show that this highly complex
nonlinear problem is solved in an equivalent of 30–80 fine-grid relaxation sweeps per time step.
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1. Introduction. This paper applies a nested iteration algorithm to a set of in-
compressible resistive magnetohydrodynamic (MHD) equations. A first-order systems
least squares (FOSLS) [11, 12] finite element discretization is used. The main focus of
this paper is to show that nested iteration is a useful tool for solving complicated sys-
tems of nonlinear partial differential equations. Many other implicit nonlinear solvers
have been developed for the MHD equations, specifically in [13, 14, 19, 20, 21, 26].
However, our aim is to describe the nested iteration strategy applied in the Newton-
FOSLS framework. This is a continuation of work found in [30, 33]. Here we develop
detailed stopping criteria for the steps in the nested iteration algorithm to make the
algorithm yield the most accuracy-per-computational-cost. As is shown for the MHD
equations, nested iteration allows for a complicated system of nonlinear equations to
be solved to within discretization accuracy in only a handful of work units (WUs). A
WU is defined as the amount of computation required to perform one fine-grid relax-
ation sweep. The main idea is that most of the work is done on coarse grids, where
computation is much cheaper. The approximation to the solution on these coarse
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NESTED ITERATION FOSLS FOR RESISTIVE MHD 1507

grids is interpolated up to successively finer grids, where linearizations and algebraic
solves are applied. The process is then continued to finer grids until a desired error
tolerance or resolution is reached. The result is that coarse grids give fairly accurate
initial guesses for solving on the fine grids, and thus less work is needed to approxi-
mate the solution at the desired resolution. The algorithm is designed to maximize the
accuracy-per-computational-cost of solving the system of equations. To accomplish
this efficiently, estimates of the accuracy on the next finer grid and the work that is
required to obtain that solution are needed. Thus, the discretization methods used
need to give good a posteriori error measures. In addition, an estimate of how well
the algebraic solver performs is needed. This includes estimates of the convergence
factors of the algebraic solver and how much more work it costs to perform such an
iteration on a fine grid compared to a coarse grid. The algorithm described in this
framework can be applied to any discretization and linear solver method that produces
these estimates. Thus, in this sense, it is designed in a general framework. However,
the specific application described is MHD, FOSLS is the discretization formulation
that is used, and algebraic multigrid (AMG) is the linear solver that is applied. The
a posteriori error measures make it very amenable to the nested iteration algorithm
that comes naturally with FOSLS. As a result, the resistive MHD system described in
section 4 is solved to within discretization error using only 30–80 WUs per time step.

The MHD system and the FOSLS formulation applied to it are discussed in detail
in the companion paper [3], so we include only a brief description here in section 2. In
section 3, the nested iteration algorithm is developed. An approach that attempts to
minimize the number of linearization steps and AMG V-cycles required to obtain an
approximation within discretization error on the current grid is described. A strategy
has been developed for this, parts of which are described in [2, 33]. We go into more
detail here. In section 4, numerical results are shown for a two-dimensional (2D)
reduced model that simulates plasma instabilities in a tokamak reactor. These results
confirm that the nested iteration approach yields solutions to the test problems in
only a handful of WUs.

2. The MHD equations and FOSLS formulation. The resistive MHD equa-
tions are time-dependent and nonlinear and involve several dependent variables. The
system is a coupling of the incompressible Navier–Stokes and Maxwell’s systems.
The primitive variables are defined to be the fluid velocity, u, the fluid pressure, p,
the magnetic field, B, the current density, j, and the electric field, E. In addition, a
resistive form of Ohm’s law,

(2.1) j = σ(E+ u×B),

is used to eliminate the electric field, E, from the equations. After a nondimensional-
ization using Alfvén units, the following equations for incompressible resistive MHD
are obtained (i.e., Navier–Stokes coupled with Maxwell’s equations) [23, 32]:

∂u

∂t
+ u · ∇u− j×B+∇p− 1

Re
∇2u = f ,(2.2)

∂B

∂t
−B · ∇u+ u · ∇B+

1

SL
(∇× j) = g,(2.3)

∇×B = j,(2.4)

∇ ·B = 0,(2.5)

∇ · u = 0,(2.6)

∇ · j = 0.(2.7)
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1508 ADLER, MANTEUFFEL, MCCORMICK, RUGE, SANDERS

Here Re is the fluid Reynolds number, and SL is the Lundquist number, both of which
are assumed to be constants and adjusted for different types of physical behavior.

Using the FOSLS method [11, 12], the system is first put into a differential first-
order system of equations. This is done based on a vorticity-velocity-pressure-current
formulation. Since explicit vorticity boundary conditions are provided in all the test
problems, this is an appropriate formulation. A scaling analysis is performed in [3],
which yields a nice block structure for the MHD system. This results in good AMG
convergence of the linear systems obtained, while still preserving the physics of the
system.

Vorticity, ω = ∇×u, is introduced, and the final formulation in three dimensions
is

1√
Re

∇× u−
√
Reω = 0,(2.8)

1√
Re

∇ · u = 0,(2.9) √
Re∇ · ω = 0,(2.10)

1√
Re

∂u

∂t
− u× ω − j×B−

√
Re∇p+

1√
Re

∇× ω = f ,(2.11)

1√
SL

∇×B−
√
SLj = 0,(2.12)

1√
SL

∇ ·B = 0,(2.13) √
SL∇ · j = 0,(2.14)

1√
SL

∂B

∂t
+

1√
ReSL

(u · ∇B−B · ∇u) +
1√
SL

∇× j = g.(2.15)

An implicit backward differencing formula (BDF) time-stepping method is applied
to this system to yield a nonlinear system of equations, L(u) = f , where L is closely
related to the left-hand side of (2.8)–(2.15) and f is a vector of known functions.
Here u = (u,ω, p,B, j)T represents a vector of all of the dependent variables that
should not be confused with the vector fluid velocity, u. Both [2] and [3] discuss the
stability and convergence of the time–stepping on the MHD problem using FOSLS.
Next the L2 norm of the residual of this system is minimized. This is a nonquadratic
functional, but since it is the functional of the nonlinear operator, we refer to it, for
simplicity, as the nonlinear functional:

(2.16) F(u) = ||L(u)− f ||0.

In general, we wish to find the arg min of (2.16) in some solution space V . We choose
V to be an H1 product space with boundary conditions that are chosen to satisfy
the physical constraints of the problem as well as the assumptions needed for the
FOSLS framework. In practice, a series of nested finite subspaces, Vh, are used to
approximate the solution in V . However, in the Newton-FOSLS approach [16, 15],
system (2.8)–(2.15) is first linearized using a Newton step, thus forming a linear
problem and an associated functional to minimize. This so-called Gauss–Newton
method [18] is an alternative to applying Newton’s method directly to the nonlinear
variational system of (2.16). The linearization is done about some approximation, uh

i ,
in the finite element space, Vh, and the change, δhi , is found such that the next iterate
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NESTED ITERATION FOSLS FOR RESISTIVE MHD 1509

is uh
i+1 = uh

i + δhi . The linearized equation is then written as

(2.17) L′(uh
i )[δ

h
i ] = f − L(uh

i ).

Here, L′(uh
i )[δ

h
i ] is the Fréchet derivative of L in the direction δhi . The well-posedness

of this linearized problem is shown by proving H1 ellipticity of the linearized system.
This has been shown in [2] under certain assumptions, but we omit such results here
in the interest of brevity.

The linearized operator, L′, is a mapping from Vh to an L2 product space. This
linear problem is now recast as the minimization of a functional constructed by taking
the L2 norm of the residual of each equation in the linearized system. This is written
as

(2.18) δh∗ = arg min
δh∈Vh

F (δh) := arg min
δh∈Vh

||L′(uh
i )[δ

h]− (f − L(uh
i ))||0,

where δh∗ is the solution in Vh. Here F (δh) is actually a quadraticized functional, but
since it is the functional of the linearized operator, it is from here onword referred to
as the linearized functional. The minimization of this functional results in the weak
form of the problem that produces a symmetric positive definite algebraic system for
each Newton step. The solution, δh∗ , satisfies the bilinear weak form:

(2.19)
〈L′(uh

i )[δ
h
∗ ],L′(uh

i )[v
h]
〉
=
〈
f − L(uh

i ),L′(uh
i )[v

h]
〉 ∀vh ∈ Vh.

Any element in the finite element space, vh, can be decomposed into the basis
function elements, φj . Thus,

vh =
∑
j

αjφj .

Then the components of the algebraic linear system, Ax = b, are as follows:

Aij =
〈L′(uh

i )[φj ],L′(uh
i )[φi]

〉
,(2.20)

bi =
〈
f − L(uh

i ),L′(uh
i )[φi]

〉
.(2.21)

In addition, proving continuity and coercivity of the resulting bilinear form results
in H1 equivalence of the FOSLS functional. In other words, there exists positive
constants c0 and c1 such that

(2.22) c0||δh||1 ≤ F (δh) ≤ c1||δh||1 ∀δh ∈ Vh.

Moreover, the FOSLS functional yields a sharp a posteriori local error estimate, which
is used to make the algorithm more robust. Additionally, under the right conditions,
the FOSLS framework produces algebraic systems that are solved easily by multilevel
iterative solvers. Our choice here is the AMG [7, 6, 5, 10, 25, 28], which, when applied
to the FOSLS discretization, has been shown to be an optimal (O(n)) solver for many
example problems [10, 11, 12]. As stated above, using the formulation in (2.8)–(2.15),
and with appropriate boundary conditions, H1 equivalence of the linearized FOSLS
functional is shown in [2]. Therefore, the FOSLS functionals are a good measure of
the H1 norm of the global error and yield a seminorm of the local error. Thus, they
can be used to develop an efficient solution algorithm.

D
ow

nl
oa

de
d 

01
/0

8/
14

 to
 1

30
.6

4.
11

.1
53

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1510 ADLER, MANTEUFFEL, MCCORMICK, RUGE, SANDERS

3. Nested iteration strategies. The goal for this section is to establish crite-
ria to control the number of Newton steps and linear iterations employed at each
refinement level. The idea is to solve the problem with the most accuracy-per-
computational-cost. An inexact Gauss–Newton method embedded in a nested it-
eration approach was presented before in the context of nonlinear first-order system
least squares problems in [30]. What is new here is the detailed derivation of termi-
nation criteria for the various subproblems on different refinement levels in order to
optimize the performance with respect to overall work. Heuristic ideas of balancing
the overall work in a multilevel framework for inexact Newton multilevel finite ele-
ment methods was also described in [18]. The results below show that only a few
Newton steps and V-cycles are needed to get a good approximation to the solution
on the finest grid. Under natural hypotheses, which are in force here, this was proved
in [16, 15]. In addition, we discuss the heuristic that it is not necessary to solve the
discrete problems on these coarse grids much below the level of discretization error.
In fact, at some point, doing more work on the coarser grid is not as efficient as just
moving to a finer grid. It is at this point that the FOSLS methodology proves to be
important. Using the a posteriori error estimate of the functional, we determine how
well both the linear and nonlinear systems are being solved. We refer to F and F as
the linearized and nonlinear functionals, respectively, as in (2.18) and (2.16).

With the linearized functional, along with the AMG convergence factors, an esti-
mate of how much the error of the linear system is being reduced and at what cost is
computed. Likewise, by measuring the nonlinear functional and by determining the
number of Newton steps performed, the accuracy-per-computational-cost required to
solve the nonlinear system is estimated. These estimates are then used to establish
stopping parameters for the linear iterations as well as for the Newton iterations. For
the linear systems, we decide if the best strategy is to either perform another V-cycle
on the current grid or to relinearize the system. Work here is an extension of [2, 33],
where the iterations were stopped when the functional value of the current iterate
came within a given tolerance of the functional minimum. The Newton iterations are
also controlled in this manner, by determining how close the approximate solution is
to the discrete solution of the nonlinear problem on a given grid. If certain criteria
are met, no more linearizations are performed and the computation is transferred to
a finer grid. In the next two subsections, we describe the stopping criteria in more
detail.

3.1. The linear problem. First, assume that the system has already been
linearized around some point u0 and that only a linear problem, Lδ = g, is being
solved. In the full nonlinear setting, L = L′, δ is the change from the Newton step
and g = f − L(u0). Assume that there are only two grids, grid h and grid 2h, and,
for simplicity, that uniform refinement is used to transfer between them. In practice,
due to the local error measures that FOSLS provides, an adaptive mesh refinement
(AMR) method can be employed as well. This is done in the proceedings paper, [1].
Using uniform refinement, though, moving to a finer grid increases the number of
elements on the finite element mesh by 2d, where d is the dimension of the problem.
Let the true continuous solution to the problem be δ∗, and let δ2h∗ and δh∗ be the
discrete solutions on their respective grids. Since the FOSLS method is used, the
functional is an estimate of the error. We denote the discretization error, measured in
the functional norm, on grids h and 2h by Fh∗ and F 2h∗ , respectively. In the process of
solving on grid 2h, several iterates, δ2hi , i = 0, 1, . . . , are obtained. At iteration i, with
iterate δ2hi , the error is measured and denoted by F 2h

i . Since the error is orthogonal
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NESTED ITERATION FOSLS FOR RESISTIVE MHD 1511

to the finite element space in the functional norm, as can be seen from (2.19), it is
convenient to write this as a multiple of the discretization error on grid 2h; that is,

(3.1) (F 2h
i )2 = (1 + (ε2hi )2)(F 2h

∗ )2.

This is also seen in Figure 3.1. The value ε2hi F 2h∗ is referred to as the algebraic error
on grid 2h with ε2hi being the fraction of the discretization error. Also, assume that
the algebraic solver has a steady convergence factor that is independent of the size of
the grid or the current iterate. This is not precisely true, but the convergence factor is
assumed to be bounded above by a constant, ρ < 1, independent of the mesh. Thus,
we assume that ρ is known and that ε2hi+1 = ρε2hi . In practice, an estimate of ρ is
obtained from a sequence of residuals of the matrix equations.

Figure 3.1 is intended to demonstrate the strategy for determining when to stop
iterating on grid 2h and move to grid h. Suppose that iterations are done on grid 2h
and that the current iterate is δ2hs , with algebraic error ε2hs F 2h

∗ . Grid 2h is indicated
in Figure 3.1 by the subspace restricted to the x-axis, while the plane represents grid h
and the true solution, δ∗, is shown hovering above δh∗ . The discrete solution on grid h is
closer to the true solution than the coarse grid approximation. In addition, iterating
on grid 2h restricts us to only getting closer to δ2h∗ . Therefore, better accuracy is
obtained by iterating on the finer grid, h. However, this is more costly, so it is
important to know how much accuracy is gained by doing one more iteration on grid
2h and by comparing this to the amount of accuracy gained by interpolating to grid h
and moving directly toward δh∗ . That is, from the position denoted by δ2hs , is it better
to move to position δ2hs+1 or to the position denoted by δh1 ? Of course, a measure of
the accuracy-per-computational-cost must be established for both of these choices.
By assumption, computation on grid h costs 2d times the cost of an iteration on grid
2h, and, by examining the triangles in Figure 3.1, the reduction of the two errors from
the two types of iteration is determined. In the next few paragraphs, we quantify a
measure that helps us determine an optimal strategy.

Fig. 3.1. Linear iterations along grid 2h and grid h.
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1512 ADLER, MANTEUFFEL, MCCORMICK, RUGE, SANDERS

Fig. 3.2. Relationship of algebraic errors on different grids.

Staying on grid 2h and iterating once more yields the new total error for iterate
δ2hs+1 as a sum of the discretization error plus the algebraic error, which is approxi-
mated as

(3.2) F 2h
s+1 = ((F 2h

∗ )2 + (ρε2hs F 2h
∗ )2)

1
2 .

If, instead, the approximate solution is moved to grid h and an iteration is performed
to obtain uh

1 , then the error can be approximated as Fh
1 = ((Fh∗ )2+(ρεh0F

h∗ )2)
1
2 . How-

ever, to compare these two measures, we must account for the fact that an iteration
on grid h is more expensive. Instead of looking at the regular convergence factor, ρ,

we look at the effective convergence factor, ρ1/Work; thus, the effective error on grid
h is approximated as

(3.3) Fh
1 = ((Fh

∗ )
2 + (ρ

1

2d εh0F
h
∗ )

2)
1
2 .

The two measures are equivalent when

(3.4) (F 2h
∗ )2 + (ρε2hs F 2h

∗ )2 = (Fh
∗ )

2 + ρ2
1−d

(εh0F
h
∗ )

2.

Extracting the triangle in Figure 3.2 from Figure 3.1, the algebraic error on grid 2h,
ε2hs F 2h∗ , can be related to the algebraic error on grid h, εh0F

h∗ . Then, after some
algebra, we obtain

(3.5) (ε̂2h)2 =

(
ρ2

1−d − 1
)(

1−
(

Fh
∗

F 2h∗

)2)
ρ2 − ρ21−d .

In other words, in terms of accuracy-per-computational-cost, it is more efficient to
move to the finer grid when the algebraic error on grid 2h is less than ε̂2hF 2h∗ .

Of course, this assumes that the discretization errors, F 2h
∗ and Fh

∗ , are known.
Only the total error, or linearized FOSLS functional value, of the current iterate on
grid 2h is known, though. One way to estimate the discretization errors is to assume
that the algebraic error decreases at a linear rate. Since the functional squared is a
quadratic, an estimate of the discretization error, or the minimum of the quadratic
functional, can be extrapolated. We assume

(F 2h
s )2 = (1 + (ε2hs )2)(F 2h

∗ )2
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NESTED ITERATION FOSLS FOR RESISTIVE MHD 1513

and that
(F 2h

s+1)
2 = (1 + (ε2hs+1)

2)(F 2h
∗ )2

= (1 + ρ2(ε2hs )2)(F 2h
∗ )2.

Thus, three consecutive steps yield an estimate of both ε2hs and F 2h∗ . This may require
doing a few extra iterations to get a good estimate of the minimum, but since this
work is done on coarse grids, we argue that this does not increase the total work
significantly.

Another approach to stopping the linear iterations involves using the discrete
linear system, Ax = b, as in (2.20) and (2.21). Note that the main idea for solving
the linear system is that the iterations should stop once the algebraic error is less
than ε̂2h of the discretization error, where ε̂2h is as in (3.5). Therefore, the stopping
criterion we seek is

(3.6) ||Lδ2hi − Lδ2h∗ ||0 ≤ ε̂2hF 2h
∗ .

Using (3.1), this can be rewritten as

(3.7) ||Lδ2hi − Lδ2h∗ ||0 ≤ ε̂2h√
1 + (ε̂2h)2

F 2h
i := ε̃2hF 2h

i .

The left-hand side is in the range of L applied to V2h, so (3.7) is equivalent to

(3.8) sup
v2h∈V2h

〈
Lδ2hi − Lδ2h∗ , Lv2h

〉
||Lv2h||0 ≤ ε̃2hFi.

Since δ2h∗ is the minimum of the linearized functional, the Fréchet derivative of the
square of the functional, G(δ2h∗ ), is zero in all directions:

(3.9) G′(δ2h∗ )[v2h] = 2
〈
Lδ2h∗ − g, Lvh

〉
= 0 ∀vh ∈ Vh.

Thus,
〈
Lδ2h∗ , Lv2h

〉
=
〈
g, Lv2h

〉
, and (3.8) becomes

(3.10) sup
v2h∈V2h

〈
Lδ2hi − g, Lv2h

〉
||Lv2h||0 ≤ ε̃2hFi.

In addition, using the fact that the linearized operator is H1 elliptic, we use the
coercivity bound, as in (2.22), and the fact that ||v2h||0 ≤ ||v2h||1 to get that (3.10)
is satisfied if the following is true:

(3.11) sup
v2h∈V2h

〈
Lδ2hi − g, Lv2h

〉
||v2h||0 ≤ ε̃2hc0Fi.

The bound (3.11) can be replaced by a bound in terms of quantities associated with
the solution of the algebraic equations. Using (2.20) and (2.21) and defining the
algebraic residual as ri = b−Axi, then (3.11) is satisfied when

(3.12) (rTi ri)
1
2 ≤ ε̃2hc0

||M−1|| (x
T
i Axi − 2bTxi + ||g||20)1/2.

Here xi is the current iterate of the coefficient vector for the solution to the linear sys-
tem, and ||M−1|| is the l2 norm of the inverse of the mass matrix associated with Vh.
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1514 ADLER, MANTEUFFEL, MCCORMICK, RUGE, SANDERS

If this stopping criterion is met, then (3.7) is satisfied. In many applications, these
quantities are readily available. However, if they are difficult to obtain, then estimat-
ing F 2h

∗ as described above is a viable alternative and is used in our numerical results.
In either case, whether using (3.1) or (3.12) to obtain (3.7), the convergence factor,

ρ, and the reduction factor due to the refinement, Fh
∗ /F

2h
∗ , are needed. Information

from a previous grid can be used. For instance, when uniform refinement is used, Fh
∗

is approximated from F 2h∗ using the assumption that

Fh
∗ =

1

2p
F 2h
∗ ,

where p is the order of the finite element space used. In [1, 17, 24], an efficiency-based
AMR scheme, known as ACE, is used that estimates the actual error reduction in
each element and determines whether more refinement is necessary. This can then be
used to determine the reduction factor in this setting. Thus, we have shown how to
determine when to perform another linear iteration on a given grid in the case of the
linearized functional. In the next section, we discuss the overall nonlinear problem
and derive stopping criteria that indicate when the nonlinear functional is solved on
the order of discretization error associated with each grid.

3.2. The nonlinear problem. The overall objective is to minimize the non-
linear functional, Fh, on grid h. The linear solves, though, are used to minimize
the linearized functional, which are assumed to be getting closer to the nonlinear
functional with every Newton step. Linearization of the operator yields a quadratic
minimization problem as depicted in Figure 3.3. Due to nested iteration, after a few
linearizations by a quadratic functional, the minimum of the linearized functional ap-
proaches the minimum of the nonlinear functional. Therefore, comparing the linear
and nonlinear functionals gives an indication of when to stop the Newton iterations.
Each Newton step yields an approximation that is “close” to the predicted minimum
of the linearized functional based on the stopping criteria established in subsection 3.1.
If the linearized functional is “close” to the nonlinear functional, this is a good indica-
tor that the approximation is also “close” to the minimum of the nonlinear functional.
However, we need to be more precise in order to establish effective stopping criteria.

Fig. 3.3. A one-dimensional interpretation of the nonlinear functional (in gray), compared to
several iterates of the linearized functional (in black).

The MHD system, (2.8)–(2.15), is polynomial, and the third Fréchet derivative
of the nonlinear operator, L′′′, is identically zero. Let δhi = uh

i+1 − uh
i denote a

step toward the minimum, uh
∗ , from the approximation, uh

i , and assume that the
approximations are all contained in a finite element space denoted by the superscript
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NESTED ITERATION FOSLS FOR RESISTIVE MHD 1515

h. Thus, the Taylor series for this problem is finite, and the nonlinear operator is
rewritten as

(3.13) L(uh
i + δhi ) = L(uh

i ) + L′(uh
i )[δ

h
i ] +

1

2
L′′(uh

i )[δ
h
i , δ

h
i ].

Taking the norm of the difference of the nonlinear residual from (3.13) and the lin-
earized residual from (2.17) yields

(3.14) Fd[δ
h
i ] := ||1

2
L′′(uh

i )[δ
h
i , δ

h
i ]||0.

Thus, the difference gives a measure of the second Fréchet derivative of the nonlinear
operator in the direction of the Newton step. It is shown below that if this is small
and if the linearized problem has been solved to within a fraction of discretization
error, then the approximation is close to the discrete solution of the full nonlinear
problem on that grid. The stopping criterion for the Newton iterations is then

(3.15)
Fd[δ

h
i ]

F(uh
i + δhi )

≤ η.

This also implies that the relative difference between the linearized and nonlinear
functionals is small,

(3.16)
|F (uh

i+1)−F(uh
i+1)|

F(uh
i+1)

≤ Fd[δ
h
i+1]

F(uh
i+1)

≤ η ⇒ F (uh
i+1) ≤ (1 + η)F(uh

i+1).

Now, just as in the linear case, any iterations on a given grid should be stopped
once the algebraic error is within a certain limit of the error. At this point, it is more
efficient to interpolate to a finer grid and continue from there. Thus, just as in (3.7)
for the linear problem, we want

(3.17) ||L(uh
i+1)− L(uh

∗)||0 ≤ ε̃hF(uh
i+1).

First there are several assumptions that are needed. Assume that all approximations
on previous grids have been solved to within discretization error on that grid, which
implies

F(uh
i+1) = O(hp).

Here h is the grid parameter, and p is the order of the finite element space. By solving
the linearized problem, we satisfy (3.11). It is easily concluded from this equation that

||L′(uh
i )[δ

h
i ]||0 ≤ (1 + η)ε̃hF(uh

i+1) ≤ (1 + η)ε̃hO(hp).

Using coercivity of the linearized functional, this also implies

||δhi ||0 ≤ ||δhi ||1 ≤ ε̃h

c0
O(hp).

In addition, for the MHD problem, L′′(uh
i )[δ

h
i , δ

h
i ] = L′′[δhi , δ

h
i ] is independent of u

h
i ,

and it is easy to show that for any two directions, w and z, there exists a positive
constant, c2, such that

||L′′[w, z]||0 ≤ c2||w||0||z||0.
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1516 ADLER, MANTEUFFEL, MCCORMICK, RUGE, SANDERS

We now use all of these estimates to get a bound on the left-hand side of (3.17).
Using the mean value theorem, the difference of the nonlinear operator applied

to two approximations yields

(3.18) L(uh
i+1)− L(uh

∗) = L′(ûh)[uh
i+1 − ûh],

where ûh = αuh
i+1 + (1 − α)uh∗ for some α ∈ (0, 1). Thus, the left-hand side of (3.17)

is in the range of L′(ûh) and can be written as

(3.19) sup
vh∈Vh

〈L(uh
i+1)− L(uh

∗),L′(ûh)[vh]
〉

||L′(ûh)[vh]||0 .

Since uh
∗ is the discrete solution to the nonlinear problem, the Fréchet derivative of

the nonlinear functional squared at this point, G(uh
∗), is zero in all directions:

(3.20)
〈L(uh

∗)− f,L′(uh
∗)[v

h]
〉
= 0 ∀vh ∈ Vh.

By adding and subtracting some terms, (3.19) can be broken into four components:

sup
vh∈Vh

(〈L(uh
i+1)− f,L′(uh

i )[v
h]
〉

||L′(ûh)[vh]||0 +

〈L(uh
i+1)− f,L′(ûh)[vh]− L′(uh

i )[v
h]
〉

||L′(ûh)[vh]||0

(3.21) +

〈L(uh∗)− f,L′(uh∗)[vh]
〉

||L′(ûh)[vh]||0 +

〈L(uh∗)− f,L′(ûh)[vh]− L′(uh∗)[vh]
〉

||L′(ûh)[vh]||0

)
.

(3.21) is bounded above by taking the sup over each term. The third term here is zero
from (3.20). By using the mean value theorem on L′, as in (3.18), and the coercivity
bound, the fourth term is bounded in the following way:

sup
vh∈Vh

〈L(uh
∗)− f,L′(ûh)[vh]− L′(uh

∗)[v
h]
〉

||L′(ûh)[vh]||0 ≤ F(uh
∗)||L′′[ûh − uh

∗ , v
h]||0

||L′(ûh)[vh]||0

≤ F(uh∗)c2||ûh − uh∗ ||0
c0

≤ c2
c0
O(hp)F(uh

∗).

The second term is bounded in the same way, replacing F(uh∗) with F(uh
i+1). This

leaves only the first term. Expanding this term using the full MHD operator yields

(3.22) sup
vh∈Vh

〈L(uh
i )− f + L′(uh

i )[δ
h
i ] +

1
2L′′(uh

i )[δ
h
i , δ

h
i ],L′(uh

i )[v
h]
〉

||L′(ûh)[vh]||0 .

This can also be broken into two terms to get

(3.23) sup
vh∈Vh

〈L(uh
i )− f + L′(uh

i )[δ
h
i ],L′(uh

i )[v
h]
〉

||L′(ûh)[vh]||0 + sup
vh∈Vh

〈
1
2L′′[δhi , δ

h
i ],L′(uh

i )[v
h]
〉

||L′(ûh)[vh]||0
.

The first term gives the exact stopping criteria for the linear iterations as in (3.10).
We have assumed that this term is small. Then, using the stopping criteria, (3.15),
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NESTED ITERATION FOSLS FOR RESISTIVE MHD 1517

and the estimates above, the second term can be bounded as well. Skipping most of
the algebra, it can be shown that

(3.24) sup
vh∈Vh

〈
1
2L′′[δhi , δ

h
i ],L′(uh

i )[v
h]
〉

||L′(ûh)[vh]||0 ≤ ηF(uh
i+1)

(
O(hp)

c0
+ 1

)
.

Now, with all four terms bounded, we have exactly what we want for the algebraic
error of the nonlinear system. Namely, using (3.1) and (3.16), this can all be bounded
in terms of the current nonlinear functional:

||L(uh
i+1)− L(uh

∗)||0 = sup
vh∈Vh

〈L(uh
i+1)− L(uh

∗),L′(uh
i+1)[v

h]
〉

||L′(uh
i+1)[v

h]||0
≤
(
ε̃h(1 + η) + η

(
O(hp)

c0
+ 1

)
+

c2
c0
O(hp) +

c2ε̃
h

ε̂hc0
O(hp)

)
F(uh

i+1).(3.25)

All of the terms involving O(hp) are assumed to be small relative to the other terms.
This will eventually be valid, even if the coercivity constant, c0, is small.

Therefore, if we are near the linearized discrete solution and the difference between
the linear and nonlinear operators is small, we know that the current Newton step
approximation is within a small fraction of the discrete solution to the full nonlinear
problem. Then, by ensuring that the linear, (3.1), and the nonlinear, (3.15), stopping
criteria are satisfied, more accuracy-per-computational-cost is gained by moving to a
finer grid.

3.3. Solution algorithm. With the pieces above, an algorithm is now devised
to solve a system of nonlinear equations, L(u) = f . Starting on a coarse grid with
a given initial guess, the system is linearized and the linearized FOSLS functional
is then minimized on a finite element space. At this point, several AMG V-cycles
are performed until there is little to gain in accuracy-per-computational-cost. The
system is then relinearized, and the minimum of the new linearized FOSLS functional
is approximated in the same manner. After each set of linear solves, the relative
difference between the linearized operator and the nonlinear operator is checked. If
this is small, then we are close enough to the minimum of the nonlinear functional.
Next the approximation is interpolated to a finer grid, where the problem is solved in
the same way. This can be done adaptively or uniformly. For this paper, we show only
the results using uniform refinement. However, an efficiency-based AMR method,
ACE [17, 24], has been employed with success on the MHD problem. Preliminary
results can be found in [1]. In any case, this process is repeated until an acceptable
error has been reached or until we have run out of computational resources such as
memory. If, as in the case of the MHD equations, it is a time-dependent problem, the
whole process is performed at each time step. This algorithm is summarized in the
flow chart in Figure 3.4.

4. Numerical results. In this section, we investigate several MHD test prob-
lems to show that the nested iteration Newton-FOSLS-AMG method is capable of
solving complex nonlinear systems in about 30–80 WUs or fine-grid relaxation equiv-
alents. The full algorithm, as shown in Figure 3.4, was applied to two tokamak test
problems [13, 14, 26, 31]. From the papers by Chacon, Knoll, and Finn [13] and Philip,
Chacon, and Pernice [26], a reduced set of MHD equations is obtained that simulate
a “large aspect-ratio” tokamak with noncircular cross sections. Here the magnetic B-
field along the z-direction, or the toroidal direction, is very large and mostly constant.
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1518 ADLER, MANTEUFFEL, MCCORMICK, RUGE, SANDERS

Fig. 3.4. Flow chart of the nested iteration algorithm. The stopping tolerances ε, as in (3.5),
and η, as in (3.15), are used for the linear iterations and nonlinear iterations, respectively.

In this context, the plasma behavior in the poloidal cross section is studied. This was
described in the companion paper, [3]. In that and related papers [11, 12], conver-
gence of the FOSLS method is also discussed. However, there the nested iteration
algorithm was applied on only one time-step. Here, it is applied at each time-step,
and we show that the appropriate physics is captured with only a handful of WUs
per time-step. In addition, in the companion paper, a time-step convergence analysis
is done. This shows that the expected convergence rate for various time-stepping
schemes is obtained.

Again the reduced model is equivalent to the 2D version of (2.8)–(2.15). The
x-direction denotes the periodic poloidal direction in the tokamak, whereas the y-
dimension represents a thin annulus in the poloidal cross section. In this 2D setting,
vorticity, ω, and current density, j, are both scalar variables. A biquadratic finite
element space and, for the time-stepping, an implicit BDF-2 scheme are used. At all
time-steps, the functional is reduced by at least four orders of magnitude; in most
cases, the functional value is less than 10−3. All tests were performed on an AMD
Opteron shared memory machine running Suse Linux and with 64 GB of shared
memory. The software package, FOSPACK [29], was used for all tests. We now apply
our methodology to two test problems, known as the tearing mode and the island
coalescence problems.

4.1. Test problem: Tearing modes. The first test problem simulates a tear-
ing mode instability arising from perturbations in a steady-state current density sheet
of a tokamak generator. In this case, a current density sheet in the toroidal direction
of the tokamak is perturbed, resulting in an instability that causes a reconnection in
the magnetic field lines. The result is a formation of an island in the contours of the
current density field and a “tearing” in the contours of the vorticity. More details can
be found in [4, 13, 14, 26]. For the following simulations, we define

Ω = [0, 4]× [0, 1], Re = SL = 1000.
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The initial conditions at equilibrium are

B0(x, y) =

(
− tanh

(
1
λ

(
y − 1

2

))
+ 4

3λ

(
y − 1

2

)3
sech2

(
1
2

λ

)
0

)
,(4.1)

u0(x, y) = 0,(4.2)

ω0(x, y) = 0,(4.3)

j30(x, y) = − 4

λ

(
y − 1

2

)2

sech2

( 1
2

λ

)
+

1

λ
sech2

(
y − 1

2

λ

)
,(4.4)

p0(x, y) = 0.303 +
1

2
|B0|2,(4.5)

where λ = 0.2. These initial conditions are perturbed away from equilibrium as
follows:

δB0(x, y) =

⎛
⎜⎝

−γπ cos(πy) sin
(
π x

2 − π
2

)
1
2γπ sin(πy) cos

(
π x

2 − π
2

)
0

⎞
⎟⎠ ,(4.6)

δj30(x, y) = −5

4
γπ2 sin(πy) sin

(
π
x

2
− π

2

)
,(4.7)

δp0(x, y) =
5

8
γ2π2 sin2(πy) sin2

(
π
x

2
− π

2

)
,(4.8)

where γ = −0.001. The boundary conditions are periodic in x and homogeneous
Dirichlet for the current density and vorticity on the top and bottom of Ω. Also,
n ·u = 0 and n ·B = 0 on the top and bottom. These boundary conditions guarantee
that the vorticity FOSLS formulation, (2.8)–(2.15), is H1 elliptic [2].

4.1.1. Results. The problem was run to time 200τA with a time-step of 1τA
using BDF-2, an implicit time-stepping scheme. Here τA is the time in Alfvén units.
By the final time-step, the tearing mode has fully developed. The nested iteration
algorithm is applied at every time-step, and stopping criteria, as described in section
3, were used for the AMG V-cycles and the linearizations so that each algebraic
problem was solved to within a specified fraction of the discretization error. In other
words, only a small amount of work was done to obtain the solution on each grid.
As the results show, this was sufficient to faithfully produce the relevant physics on a
64× 256 fine grid with quadratic elements. This requires 463, 239 degrees of freedom.
The linear and nonlinear stopping parameters are

F 2
s ≤ 1.01F 2

∗ ,
Fd

Fs
≤ 0.1.

On the finest grid and for all time-steps, only one Newton step was needed to approx-
imate the nonlinear solution within the discretization error, and only a small number
of V-cycles were needed for the linear solves to achieve the desired accuracy.

Figure 4.1 shows that the method resolves the problem correctly. The main
properties of the tearing mode have been captured. The total work is shown in
Table 4.1. The WUs for a given time-step are computed by first estimating the work
of one V-cycle on a given level, which is defined as the V-cycle complexity, Cl

v, at the
given refinement level, l, and computed as follows:

(4.9) Cl
v =

∑ml

j=1 nz
l
j ∗ rlj

nzl1
,

D
ow

nl
oa

de
d 

01
/0

8/
14

 to
 1

30
.6

4.
11

.1
53

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1520 ADLER, MANTEUFFEL, MCCORMICK, RUGE, SANDERS

Fig. 4.1. Numerical solution after (a) 50τA and (b) 200τA. h = 1/64 and p = 2 using uniform
refinement. Re = SL = 1000. Top: vorticity. Bottom: current density.

where ml is the total internal levels of a given V-cycle on the overall grid, l, nzlj is the

number of nonzeros in the linear system on the V-cycle level, and rlj is the number of
relaxations performed. For all test problems in this paper, V(1,1) cycles are used, and,
thus, rlj = 2. This value is then multiplied by the number of V-cycles performed on
that nested grid for all Newton steps. To compare the work from one grid to another,
this value is then multiplied by the matrix nonzeros for that grid and summed over
all levels. The total work for the time-step is then defined as

(4.10) WT =

∑n
l=1 NZl ∗ Cl

v ∗ Vl

NZ1
.

Here NZl = nzl1 is the total nonzeros on each nested iteration grid, NZ1 refers to
the finest grid for that time-step, Vl is the total number of V-cycles performed on the
grid, and n is the maximum refinement levels for the given time-step.

The results in Table 4.1 show that, using the nested iteration algorithm, complex
instabilities in a fusion reactor simulation are captured at a cost of 30–80 WUs. For
later time-steps, a slight deterioration in AMG convergence on finer grids is seen. For
these later time-steps, the reconnection is beginning to develop, and, therefore, more
features are forming. Thus, the cost of our AMG solver needs to be addressed in fu-
ture work. It appears that we have scalability, in that the cost is bounded uniformly
in the grid size, but that bound is not as small as we expect or would like. Despite this

Table 4.1

Number of degrees of freedom, Newton steps, and V-cycles used at each level and time-step.
The number of WUs or equivalent fine-grid relaxations are also computed here.

Time Grid DOF Nwt Steps Avg V-cycles WUs Avg WU/Time-step
1-82 6 595 1 4 0.011
1-82 5 2,079 2 11. 0.118
1-82 4 7,735 2 14.1 0.650
1-82 3 29,799 2 17.8 3.421 ≈ 35 WU
1-82 2 116,935 1 15.7 12.677
1-82 1 463,239 1 5.7 18.358

83-200 6 595 2 8 0.021
83-200 5 2,079 2 11 0.118
83-200 4 7,735 2 18.4 0.852
83-200 3 29,799 2 21 4.063 ≈ 77 WU
83-200 2 116,935 1 20.9 16.869
83-200 1 463,239 1 16.9 55.036
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NESTED ITERATION FOSLS FOR RESISTIVE MHD 1521

increased cost, FOSLS gives a discretized system that is symmetric positive definite,
and AMG solves it accurately and efficiently, especially in the context of a nested
iteration algorithm. It also gives sharp error estimates that aid in continuously calcu-
lating the accuracy-per-computational-cost. In addition, as is seen in the proceedings
paper, [1], using an efficiency-based AMR scheme reduces the amount of work needed
to obtain the same accuracy for the solution.

In the next problem, the island coalescence instability, we again see the effective-
ness of the nested iteration algorithm.

4.1.2. Test problem: Island coalescence. The second test problem simulates
an island coalescence in the current density arising from perturbations in an initial
current density sheet. Again, a current density sheet in the toroidal direction of the
tokamak is perturbed, resulting in an instability that causes a reconnection in the
magnetic field lines and merging of two islands in the current density field. This
produces a sharp peak in current density where the magnetic field lines reconnect.
This region is known as the reconnection zone, and the point at which the magnetic
field lines break is known as the X -point. See [4, 21, 26] for more details. For the
following simulations, we define

Ω = [−1, 1]× [−1, 1], Re = SL = 50, 001.

The initial conditions at equilibrium are

B0(x, y) =
1

cosh(2πy) + k cos(2πx)

(
sinh(2πy)
k sin(2πx)

)
,(4.11)

u0(x, y) = 0,(4.12)

ω0(x, y) = 0,(4.13)

j30(x, y) = ∇×B0 =
2π(k2 − 1)

(cosh(2πy) + 0.2 cos(2πx))2
,(4.14)

p0(x, y) =
(1− k2)

2

(
1 +

1

(cosh(2πy) + 0.2 cos(2πx))2

)
,(4.15)

where k = 0.2. These initial conditions are perturbed away from equilibrium as follows:

δB0(x, y) =

⎛
⎝ −γ 1

π cos(πx) sin
(
π y

2

)
1
2γ

1
π cos

(
π y

2

)
sin(πx)

0

⎞
⎠ ,(4.16)

δj30(x, y) = γ cos
(
π
y

2

)
cos(πx),(4.17)

where γ = −0.01. The boundary conditions are periodic in x and Dirichlet for the
current density and vorticity on the top and bottom of the domain. Also n · u and
n ·B are known on the top and bottom. Again, the FOSLS formulation, (2.8)–(2.15),
is H1 elliptic.

4.1.3. Results. The problem was run to time 8τA with a time-step of 0.1τA
using a BDF-2 scheme. At the end of the simulation, the islands have begun to
coalesce, and a large peak in current density has occurred at the reconnection point.
Using uniform refinement and quadratic elements, the nested iteration was performed
up to a 128 × 128 grid. This leads to 462, 343 degrees of freedom. The linear and
nonlinear stopping parameters are again

F 2
s ≤ 1.01F 2

∗ ,
Fd

Fs
≤ 0.1.
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As with the tearing mode instability, on the finest grid and for all time-steps, only
a couple of Newton steps were needed for the Newton iterations to converge, and a
small number of V-cycles were needed for AMG to resolve the linear system. This
is seen in Table 4.2. In this problem, when the reconnection begins, a sharp peak
in current density occurs, resulting in steep gradients in the magnetic field. As a
result, the nonlinearities in the problem get larger for these time-steps. This may
explain why, for later time-steps, two Newton steps are needed to get the linear and
nonlinear operators to be close on the finest grid. These features might not be seen on
the coarser grids, and, therefore, a little more work is needed. On a bigger machine,
higher resolutions can be obtained, and we expect the algorithm to eventually need
only one Newton step on the finest grids. Future work will simulate the algorithm on
a parallel version of the code that will allow for more refinement. However, with the
resolution obtained here, the algorithm is still capable of capturing the appropriate
physics in only 65 WUs per time-step. The results with uniform refinement at time
8τA are seen in Figure 4.2. This shows the sharp peak in the current density, as well
as the coalescence of the two islands.

Table 4.2

Number of degrees of freedom, Newton steps, and V-cycles used at each level and time-step.
The number of WUs or equivalent fine-grid relaxations are also computed here.

Time Grid DOF Nwt Steps Avg V-cycles WUs Avg WU/Time-step
1-80 7 175 1.2 4.7 0.003
1-80 6 567 1.8 8.7 0.027
1-80 5 2,023 1 4 0.056
1-80 4 7,623 1 4.1 0.229 ≈ 65 WU
1-80 3 29,575 1.1 5.7 1.147
1-80 2 116,487 1.4 11.7 9.532
1-80 1 462,343 1.5 16.8 54.433

Fig. 4.2. Numerical solution of current density (j) after (a) 2τA and (b) 6τA. h = 1/64 and
p = 2 using uniform refinement. Re = SL = 50, 001.
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In addition to showing that the algorithm works well numerically on the island
problem, we also confirm that it is capable of capturing the physics of the problem.
To do this, the growth and reconnection rates of the instabilities are measured. These
are described in [4, 13, 21, 26].

First the growth rate, which measures the rate at which the perturbation from
the equilibrium state in all the primitive variables grows over time, is computed as
follows:

(4.18) Γ(t) = log||U − U0||0.

Here U is any of the dependent variables, and U0 is the unperturbed initial equilibrium
state of that variable. We expect the perturbations for the island instability to grow
exponentially with time up until the reconnection occurs. This is seen as a linear rate
for Γ(t). After this, the growth rate should remain steady with order one. This is
shown in Figure 4.3 for Reynolds and Lundquist numbers of 5,000 and 50,001. The
instabilities are propagating at the expected rate.

Fig. 4.3. Growth rate of all variables over time. Left: Re = SL = 5, 000. Right: Re = SL =
50, 001.

Another measure of the quality of the approximate solution is the reconnection
rate. This describes how the magnetic field lines break and reconnect over time. It
is measured by checking how the current density, j, changes with time relative to
its equilibrium state, proportionally to the resistivity of the system, specifically at
the point where the reconnection occurs. For the island coalescence problem, this is
known as the X -point or the point at which the two islands collide. We have

(4.19) Ez |X =
∂Ψ

∂t
|X =

1

SL
(j(t)− j(0))|X ,

where Ψ is the poloidal flux function. As in [13, 21], it is expected that the recon-
nection rate increases over time until the reconnection occurs, when it reaches its
peak magnitude. It then decays back to zero as the islands merge into one. For
higher Lundquist numbers (i.e., lower resistivities), this decay involves some oscilla-
tions known as “sloshing” [21]. This behavior is also observed as shown in Figure 4.4.
For a Lundquist number of 5, 000, the reconnection rate peaks and then smoothly
decays to zero. For Lundquist numbers of 10, 000 and 50, 001, the sloshing develops
after the reconnection has occurred. In addition, it is predicted that the peak re-

connection rate decreases with Lundquist number with order O(S
−1/2
L ). The nested

iteration method captures this relation, as shown in Figure 4.4.
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1524 ADLER, MANTEUFFEL, MCCORMICK, RUGE, SANDERS

Fig. 4.4. Top and bottom left: reconnection rate versus time. Top left: SL = 5, 000. Top right:
SL = 50, 001. Bottom left: SL = 10, 000. Bottom right: peak reconnection rate versus Lundquist
number, SL.

5. Discussion. We showed that the FOSLS finite element method, along with
nested iteration, is highly effective for the complicated, current-vorticity form of re-
sistive MHD. Real-world MHD applications are solved very efficiently when the focus
is on accuracy-per-computational-cost. The crux of the above methodology is that
most of the difficult computations, such as the linearizations, are done on coarser
grids, where computing is less expensive. Moreover, the result of interpolating the
solution from the coarse grid up to the fine grid provides a good starting guess for
the solution on that finer grid. As a result, when the desired accuracy is reached,
an approximation to the solution is obtained in only a few WUs. The use of FOSLS
greatly aids this process. Its sharp, a posteriori error estimate allows parameters to
be computed that are used to estimate the current accuracy-per-computational-cost.
However, any other discretization method and iterative linear solver that can provide
such parameters can be used instead.

While this paper mainly focused on the nested iteration concepts, an additional
way to obtain better accuracy-per-computational-cost is through the use of AMR.
This allows for the meshes to be locally refined at each time-step and, therefore, follow
the physics of the solution as it evolves over time. As stated above, the efficiency-
based AMR scheme, ACE [17, 24], has been used successfully on these types of MHD
problems [2, 1]. For the island coalescence problem, using the ACE algorithm along
with the nested iteration Newton-FOSLS-AMG scheme results in 10% of the work
that uniform refinement requires to get to the same functional error.

Several aspects still need to be studied. First, if previous data are used to de-
termine when to move to a finer grid, then the previous data must be solved “well
enough” to get good estimates. For instance, is it necessary to solve the problem on
the previous time-step to a greater accuracy than otherwise required in order to ob-
tain accurate parameters? For this paper, all of the parameters were chosen based on
average estimates and were fixed for the entire run. In the future, we hope to develop
heuristics that allow these parameters to be adjusted dynamically. At some point,
more complicated physics could occur, and then the algorithm needs to determine
those parameters more precisely.
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Second, the linear system solvers are what dictate the overall efficiency of the
nested iteration Newton-FOSLS method. For this paper, the algebraic systems are
solved with a classical algebraic multigrid method. Deteriorations in the algebraic
convergence for increased time-step size as well as Reynolds and Lundquist numbers
are observed. The current AMG algorithm can be improved in several ways. One
might develop an improved AMG scheme for the above type of systems of partial
differential equations that might involve the use of newly developed adaptive multigrid
algorithms described more in [8, 9, 22]. Using a problem-specific linear solver would
produce scalable results and thus would greatly enhance the positive effects of using
nested iteration.

Finally, there are many other MHD problems to be tested, as well as other time-
dependent problems in fluid dynamics that have large nonlinearities. Using a first-
order system least squares formulation with nested iteration, we were able to resolve
the above MHD physics, and we believe that, with a careful formulation, these meth-
ods can be used for many other time-dependent nonlinear systems.
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