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Abstract 
 
Patterned surfaces are of considerable interest for display 
applications as they permit the construction of bistable 
devices as well as anchoring energies that are adjustable 
by changing the design parameters. Here, the behavior of a 
nematic film confined between substrates periodically 
patterned with rectangles is examined analytically. It is 
shown that multiple stable configurations exist and that the 
effective azimuthal anchoring energy may be controlled by 
changing the aspect ratio of the rectangles. 
 

1. Introduction 
 

  The interaction of a nematic liquid crystal with a surface 
is characterized by an easy axis and an anchoring energy 
that measures the cost of deviations of the director away 
from this direction. Surfaces may be patterned 
topographically or geometrically to promote a spatially 
varying easy axis. A nematic placed in contact with such a 
surface is highly distorted in the region immediately 
adjacent to the surface in order to comply with the 
boundary condition and relaxes into the bulk.  
  A patterned surface may be viewed as promoting an 
effective easy axis and anchoring energy that depend on the 
design parameters of the surface[1]. Moreover, by 
patterning the surface with a design of suitable symmetry, it 
is possible to create surfaces with multiple effective easy 
axes[2-5]. Theoretical work reveals that the alignment is 
due to elastic anisotropy, but has been limited to two-
dimensional systems[6]; in the present work we develop an 
analytical technique for systems where the director is a 
function of all three coordinates. 
 

 
Fig. 1. The system under consideration 

2. Model 
 
Consider a nematic between two surfaces patterned with 

rectangles that promote vertical and planar alignment 
alternately (fig. 1). Design parameters for the system are d 
the cell thickness, the periods of the patterning λx and λy, 
and the anchoring strength of the individual regions W. As 
𝜆!/𝜆! → ∞  the striped system analyzed in[6] is recovered. 

The configuration of the liquid crystal is specified by the 
director parametrized here by angular variables 

 
𝒏 = cos 𝜃 cos𝜙 , cos 𝜃   sin𝜙 , sin 𝜃 .                                    (1) 

 
The actual configuration adopted is the global minimum of 
the Frank free energy[7], found by solving the Euler-
Lagrange (EL) equations which are highly nonlinear. A 
common approximation is to set all elastic constants to the 
same value; this is not useful for patterned surfaces because 
the free energy becomes independent of the azimuthal 
alignment angle φ, predicting no alignment in contradiction 
with experiment. If, however, the twist elastic constant 𝐾! 
is allowed to vary, the Euler-Lagrange equations remain 
linear for the situation where the director everywhere lies 
parallel to a single plane. Such an approximation is justified 
for many nematic materials, where the relation K2<K1~K3 
roughly holds, and for patterned surfaces where both 
vertical and planar easy axes are included.  

Within these approximations, the EL equation for the 
zenithal coordinate of the director θ may be reduced to 
Laplace’s equation through a linear change of variables. 
The geometric significance of this transformation, an 
anisotropic scaling of the coordinates, may be visualized by 
plotting the appearance of the pattern itself in the new 
coordinates (fig. 2). The solution for θ was obtained using a 
series expansion with a weak anchoring boundary condition, 
and a corresponding expression for the free energy obtained. 
 

 
Fig. 2. Pattern in coordinates where EL equation is
Laplace’s equation (here 𝝉 = 𝑲𝟐/𝑲𝟏). 
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Fig. 3. Free energy as a function of φ  for different 

values (a) of L the anchoring parameter  (b) 
aspect ratios of the pattern with L=0.01. 
 

3. Results and Discussion 
 
We first examined square patterns, i.e. where λx= λy=d, 

for which the energy of the nematic is plotted as a function 
of the azimuthal alignment angle 𝜙 in fig. 3 for various 
values of the anchoring parameter 𝐿 = 𝑊𝑑/𝐾! . The 
profiles reveal bistable alignment as expected from the 
symmetry of the squares, however there is an anchoring 
transition: for strong anchoring (low L), alignment is along 
the edges of the squares, while for weak anchoring the 
minimum energy lies along the diagonals. The effect of 
altering the period of the pattern is shown in fig. 3 where 
the difference between the diagonal and aligned solution is 
plotted as a function of λx/d. The diagonal solution is 
preferred for smaller λx/d and weak anchoring.  

In fig. 4 the free energy per unit area as a function of φ is 
displayed for various aspect ratios. As the aspect ratio is 
increased from 1, square patterning, the degeneracy of the 
pattern is broken and the liquid crystal prefers to align 
along the long side of the rectangle. Above a certain value 
of aspect ratio ~1.2, the solution aligned along the short 
axis of the rectangle becomes unstable. Interpreting fig. 4 as 
an effective azimuthal anchoring potential, the depth of this 
potential is adjustable by a factor of 5 over a similar range 
of aspect ratios: the rectangle pattern is a surface of 
adjustable azimuthal anchoring energy. 

 

 
Fig. 5. Stability diagram for as 𝝀𝒚/𝝀𝒙 → ∞ 
 
The validity of the two constant approximation was 

examined by solving the full EL equations for the striped 
system 𝜆!/𝜆! → ∞ using the First-Order System Least 
Squares Finite Element method with Algebraic Multigrid[8]. 
The region of stability for solutions aligned parallel and 
perpendicular to the stripes is displayed in fig. 5 as a 
function of ratios of the elastic constants.  
 

4. Summary 
 

A new approximation has been developed suitable to 
predict the alignment of a liquid crystal by a patterned 
surface where the nematic director is a function of all three 
coordinates. As an example application, a pattern with 
alternating vertical and planar rectangular regions has been 
analyzed. The system has two notable features: the bulk 
alignment undergoes a transition depending on the 
anchoring strength; the effective azimuthal anchoring 
promoted by the pattern may be controlled by adjusting the 
aspect ratio of the pattern. Further work to consider the full 
nonlinear problem as well as the dynamics is in progress.  
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