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Abstract—Under ultra-high solar concentration, an anomalous
open-circuit voltage drop-out has been observed experimentally,
but not understood theoretically. This anomaly is often attributed
to various thermal effects but is also observed in flash testing,
where thermal effects do not have time to accumulate. As the
optically generated carrier density increases past the equilibrium
carrier density, open-circuit voltage and other important electri-
cal properties could deteriorate. Using Newton linearizations and
the finite-element library deal.II, we developed a computational
model to solve the carrier continuity equations for optically
generated charge carriers as a function of material depth in
bulk III-V semiconductors.

Index Terms—III-V semiconductor materials, finite element
analysis, newton method, numerical simulation, photovoltaic
cells.

I. INTRODUCTION

The greatest challenge facing renewable energy is finan-
cially competing with traditionally cheap fossil fuels. Con-
centrating photovoltaics (CPVs) offer a route to combine high
power conversion efficiencies with low costs by decreasing the
illumination area needed to produce comparable power. The
current record for solar cell efficiency is 46.0%, at a solar con-
centration of 508 suns[1]. As CPV technologies move closer
to solar concentration values classified as “ultra-high” (>1000
suns), it becomes necessary to re-examine the semiconductor
physics that govern our understanding of important electrical
properties. By understanding the limiting behaviors of these
devices, researchers will be all the more effective in designing
CPV devices that can surpass the 50% conversion efficiency
barrier and achieve affordability.

As shown in Figure 1, power conversion efficiency increases
with solar concentration to a maximum point, but drops dra-
matically as concentration is increased further. This efficiency
drop is most commonly attributed to the fill factor of the
device, as series resistance becomes more prominent due to
current flooding with high solar concentrations. Additionally,
at ultra-high solar concentrations, the current generated can
exceed the peak tunneling current of a multijunction device.
This is suspected to have occurred to the device in Figure 1.

However, little explanation is given for the open-circuit volt-
age’s (Voc) behavior as a function of concentration. The Voc
of a CPV device is characterized by the following expression
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Equation (1) shows that the short-circuit current (Isc) is pro-
portional to the solar concentration (X). Under high irradiance
(X>100), the equation is simplified further, and Voc is shown
to be a function of its value at 1 sun, the diode ideality factor
(n), and the solar concentration [2]. This indicates that Voc,
as a function of ln(X), should increase linearly, with a slope

Fig. 1. Triple junction GaInP/InGaAs/InGaAs CPV subjected to high-
irradiance flash testing. Voc displays anomalous drop-out [3].



determined by the diode ideality factor (n). Although this
is experimentally confirmed at high irradiance, experimental
data for cells subjected to ultra-high irradiance (>1000 suns)
exhibits anomalous Voc drop-off [2]-[6].

II. PROBLEM FORMULATION

To investigate the cause of anomalous Voc drop-out in ultra-
high CPVs, we employed Newton linearization and finite-
element discretization to solve the carrier continuity equations
without many of the standard simplifying assumptions. The
total carrier density, n(x) and p(x), can be expressed as the
following,

n(x) = n0 + δn (2)
p(x) = p0 + δp, (3)

which is the sum of the optically-generated charge carriers (δn
and δp) and the equilibrium carriers (n0 and p0). Throughout
this paper, we will express carrier concentrations in units of
cm−3. The continuity equations, defined in 1D, are as follows,
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where

Jn = qn(x)µnξ + qDn
∂n

∂x
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Jp = qp(x)µpξ − qDp
∂p

∂x
. (7)

We solve Equation 4 when examining an n-type material, and
Equation 5 when examining a p-type material. Here, µn and µp
are the carrier mobilities, Dn and Dp are the carrier diffusion
coefficients, ξ is the electric field in the semiconductor, G
is the generation rate of carriers, and Rn and Rp are the
recombination rates.

In the case of uniform doping, the equilibrium carriers can
be modeled as flat distribution. Under conventional illumina-
tion, the optically generated majority carriers are orders of
magnitude less than the equilibrium majority carriers, and
therefore do not induce a local electric field. However, as
optically generated carriers begin to overcome the equilibrium
carrier density, this may not be the case. Therefore, to un-
derstand the carrier dynamics in ultra-high CPVs, we must
directly solve Equations 4 and 5 for the case of high-carrier
injection.

A. Recombination Term
Under low-injection conditions, the recombination rate is

limited by the excess minority carriers (δn and δp), which are
the optically generated in our formulation.

Rn =
δn

τn
(8)

Rp =
δp

τp
. (9)

Rn applies for a n-type material, and Rp applies for a p-type
material. In the case of high-injection, as optically generated
carriers increase to similar orders of magnitude as the equi-
librium carriers, it will be difficult to differentiate minority
and majority carriers. As a result, we propose an alternate
expression for the recombination term in the carrier continuity
equations.

Rn = Rp =
δn(x)δp(x)

τpδn(x) + τnδp(x)
. (10)

In the case where δn << δp, this expression reduces to the
low-injection Rn. In the case where δp << δn, this expression
reduces to the low-injection Rp. When the carriers are of
the same order of magnitude, and greater than the dopant
concentrations (δn≈δp > ND or NA), this expression becomes
an average of the two low-injection rates.

B. Electric Potential

Under one sun solar concentration, it is safe to assume that
the optically generated carriers do not induce a local electric
field. However, as the optically generated carrier densities
increase towards the equilibruim carrier densities, that may
not be a safe assumption. Therefore, we must solve a third
equation alongside Equations 4 and 5: Poisson’s Equation,

∇2V = −ρ
ε

(11)

d2V
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ε
, (12)

where V is the electric potential and ε is the relative permittiv-
ity of the material. In 1D, this simplifies to Equation 12. We
can translate our computed electric potential to a local electric
field by taking the derivative.

ξ(x) = −dV

dx
. (13)

C. Boundary Conditions

To compute the specific solutions for n(x) and p(x), we
must employ 6 boundary conditions: one on each end of our
material for all three quantities (n, p, and V). Assuming a
chunk of semiconducting material of length L, we know that
n(x) and p(x) will be constrained on the boundaries by the
surface recombination rates [4]. These are Robin boundary
conditions, as they constrain the value of the function and its
derivative on the boundary [8].

n′(0) =
Sr
Dn

(n(0)− n0) (14)

n′(L) = − Sr
Dn

(n(L)− n0) (15)

p′(0) =
Sr
Dp

(p(0)− p0) (16)

p′(L) = − Sr
Dp

(p(L)− p0) . (17)

Sr is the surface recombination rate. Throughout this paper,
we will use prime notation to signify the spatial derivative. We



TABLE 1

Gallium Arsenide Material Parameters [7]

Electrical Properties Optical Properties

Electron Diffusion Coefficient Dn 220 cm2/s Solar Concentration X 1-10,000
Hole Diffusion Coefficient Dp 10 cm2/s Photon Flux Lfl 2×1017cm−2

Electron Mobility µn 8500 cm2/(V·s) Reflection Coefficient R 0.1
Hole Mobility µp 400cm2/(V·s) Absorption Coefficient α 105cm−1

Carrier Lifetime τn τp 10−9sec
Intrinsic Carrier Density ni 2×106cm−3

Relative Permittivity ε 1.14×10−12 F/cm
Length L 1µm

employed Dirichlet boundary conditions for the electric poten-
tial, since the potential difference across the semiconducting
material will be known. For an intrinsic material (simplest
case) we defined the potential as,

V (0) = 0 (18)
V (L) = 0. (19)

For a pn junction in the low-injection condition, the potential
will be defined as follows,

V (0) = 0 (20)

V (L) =
kT

q
ln
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)
. (21)

The potential difference across the device will be equal to the
built-in voltage; therefore, it will be determined by the doping
concentrations (NA and ND).

D. The Finite Element Method (FEM)

In this work, we propose a flexible computational model
using Newton linearization and variational formulations, build-
ing on finite-element methods (FEM) and nested iteration to
achieve numerical solutions to the carrier continuity equations
[8]. Our approach derived a first-order linearization of the PDE
system, allowing for discretizations and leveraging standard
FEM techniques that work well for electromagnetics and fluid
dynamics. We employed the Newton-Raphson method, an
iterative process that finds a zero of a function in the vicinity
of an initial guess, to numerically approximate the carrier
concentration profiles [8]. The process is as follows,

0 = f ′(xk)∆x+ f(xk) (22)
f(xk+1) =f(xk) + ∆x. (23)

In this work, the functions were Equations 4, 5, and 12, k was
our iteration number and xk represented the numerical approx-
imation (nk, pk, and Vk in our problem). ∆x represented the
iterative update that moved closer to the root of the function
in question.

A variational formulation of Equations 4, 5, and 12 are dis-
cretized and solved using deal.II, an open source C++ software
library that facilitates solving PDE systems [9]. Integrating
by parts and applying the Robin boundary conditions allowed
for elimination of the second order terms, deriving a first-
order variational system. The solutions, n(x) and p(x) were

built using Lagrange elements of order 2, scaled to define our
functions over an interval of 1 µm.

III. RESULTS

We begin by testing our solver for the simplest case: one
sun solar concentration shining on an intrinsic semiconductor
in equilibrium conditions. The PDE system was as follows,
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In this problem, carriers were generated by optical means;
therefore, the generation rate was as follows,

Gop = αXLfl(1−R)e−αx, (27)

where α is the absorptivity of the material, X is the solar
concentration (for 1 sun, X=1), Lfl is the photon flux, and
R is the reflection coefficient of the material. Standard values
for gallium arsenide were used for these parameters, found in
Table 1.

The initial guess was comprised of an analytical solution to
the carrier continuity equations when no local electric field
is present. This analytical solution also employs the low-
injection recombination term. When material parameters are
introduced, the resulting functions for n(x) and p(x) are sums
of positive and negative exponentials, added to the equilibrium
concentrations.

n(x) = n0 + n1e
γn1x + n2e

−γn2x + n3e
−γn3x (28)

p(x) = p0 + p1e
γp1x + p2e

−γp2x + p3e
−γp3x. (29)

V(x)=0 was chosen for the initial guess for the electric poten-
tial as we began with a simple bulk material. Figure 2 depicts
the minority carrier concentration profiles and the electric



Fig. 2. Computed carrier profiles through 1µm of intrinsic GaAs. Figure
(a) depicts the low-injection recombination term, while figure (b) depicts the
modified recombination term proposed in this work.

potential as a function of depth through 1µm of GaAs. We
initially gave our solver the analytical solution computed with
the low-injection recombination term and zero local electric
field. As we expected, this was a stationary solution for our
solver and our computed carrier profiles were nearly identical
to the analytical solution. Once the accuracy of our solver
was confirmed, we included the alternate recombination term.
The computed solutions deviated slightly from the analytic
solution, as was expected since the analytical solution employs
a different recombination term, but the overall shape of the
carrier density profile is unchanged. In both cases, we observed
the correct electric potential solution, V(x)=0 throughout the
device.

A. Increasing Concentration

As we increase the solar concentration, the minority car-
rier concentration profiles increase by the same orders of

Fig. 3. Electric potential profiles through 1µm of intrinsic GaAs. Figure
(a) depicts the low-injection recombination term, while figure (b) depicts the
modified recombination term proposed in this work.

Fig. 4. Normalized plots of the computed carrier profiles with increasing solar
concentration. Figures (a) and (b) depict the low-injection recombination term,
while figures (c) and (d) depict the modified recombination term proposed in
this work.

magnitude. However, we notice a change in the shape of
the profiles as solar concentration increases. Figure 4 depicts
the normalized computed carrier profiles for 4 magnitudes
of solar concentration (1, 100, 1000, and 10,000 suns). As
solar concentration increases, the electron concentration profile
through the device steepens. The hole concentration profile
seems to flatten slightly, but this profile change is much less
significant than that of the electrons. We see this effect both
when we implement the low-injection recombination term and
when we implement the high-injection recombination term.

B. Local Electric Field

In GaAs, the electron mobility is an order of magnitude
greater than the hole mobility; therefore, the electron profiles
will have a more apparent change than the holes. As mentioned
previously, when an analytic solution for excess carriers in
a device is directly solved, one must assume negligible drift
current (no local electric field) within the device. The analytic
solution’s PDE system was as follows,

0 =
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q
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∂x
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δn(x)
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(30)



Fig. 5. Plots of drift and diffusion current as a function of depth through
1µm of intrinsic GaAs. At low solar concentrations, drift current is negligible
compared to diffusion current. At high concentrations, this is not the case.

0 =
Dp

q

∂2p(x)

∂x
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δp(x)

τp
, (31)

with boundary conditions given by Equations 14-17.
While this is a safe assumption for 1 sun solar concentration,

the solver shows that this assumption breaks down at higher
concentrations. Figure 5 depicts the drift and diffusion currents
as a function of depth in the bulk material for the same solar
illuminations as shown in Figure 4 (1, 100, 1000, 10,000 suns).
As solar concentration increases, the drift current is no longer
negligible, and must be accounted for in the carrier continuity
equations. We believe that the solver can more accurately solve
for the carrier profiles at high concentrations as it incorporates
the drift current and the electric field.

IV. SUMMARY

In this work, we have explored methods of solving a
nonlinear PDE system that governs the spatial dependence of
electrons and holes in ultra-high concentration photovoltaics.
Using the deal.II finite-element library, we successfully solved
the carrier continuity equations for optically generated charge
carriers in GaAs under various solar concentrations. We have
shown that typical methods of characterizing excess carrier
profiles cannot apply under high irradiance, ultimately impact-
ing our understanding of electrical properties such as open-
circuit voltage. In future work, we will apply deal.II using
ultra-high concentration parameters in a dynamic, rather than
quasi-steady state, case. Ultimately, we will use these carrier
concentration profiles to electrically model CPV devices.
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