
Received: 8 September 2016 Revised: 16 June 2017 Accepted: 3 July 2017

DOI: 10.1002/nla.2115

R E S E A R C H A R T I C L E

Composite-grid multigrid for diffusion on the sphere

James H. Adler1 Ilya Lashuk1 Scott P. MacLachlan2

1Department of Mathematics, Tufts

University, 503 Boston Avenue, Medford,

MA 02155, U.S.A.

2Department of Mathematics and Statistics,

Memorial University of Newfoundland, St.

John's, NL A1C 5S7, Canada

Correspondence
Scott P. MacLachlan, Department of

Mathematics and Statistics, Memorial

University of Newfoundland, St. John's, NL

A1C 5S7, Canada.

Email: smaclachlan@mun.ca

Funding information
NSERC; NSF, Grant/Award Number:

DMS-1418843, DMS-1015370, and

DMS-1216972

Summary
Recently, there has been much interest in the solution of differential equations on

surfaces and manifolds, driven by many applications whose dynamics take place

on such domains. Although increasingly powerful algorithms have been developed

in this field, many straightforward questions remain, particularly in the area of

coupling advanced discretizations with efficient linear solvers. In this paper, we

develop a structured refinement algorithm for octahedral triangulations of the sur-

face of the sphere. We explain the composite-grid finite-element discretization of

the Laplace–Beltrami operator on such triangulations and extend the fast adap-

tive composite-grid scheme to provide an efficient solution of the resulting linear

system. Supporting numerical examples are presented, including the recovery of

second-order accuracy in the case of a nonsmooth solution.

KEYWORDS

fast adaptive composite-grid (FAC) algorithm, finite-element discretizations on surfaces,

Laplace–Beltrami operator, multigrid

1 INTRODUCTION

Discretization of scalar elliptic partial differential equations (PDEs) over regions in the plane or volumes in R3 is, in general,

a well-understood subject, with viable finite-difference,1,2 finite-element,3,4 and finite-volume5 approaches seen in standard

textbooks and references. Mesh-refinement techniques are also well understood in this setting, with numerous strategies and

algorithms appearing in the literature.6–11 For standard scalar elliptic problems, on both uniform and refined meshes, the solution

of the resulting linear systems is typically accomplished efficiently using multigrid methods,12,13 including robust geometric

methods,14 composite-grid algorithms,15–18 and algebraic multigrid (AMG).19,20

A wide body of recent research has been devoted to extending classical discretization approaches to PDEs posed on surfaces

and manifolds. Natural techniques that parameterize a surface based on regular coordinates in the plane are one option,21,22

but these are limited to simple surfaces and introduce problematic singularities, both in the underlying surface meshes (as, for

example, at the poles of the sphere when using latitude–longitude grids) and the discretized differential operators. Embedding

methods are another approach, exemplified by the closest point method (CPM) of Ruuth and coauthors,23,24 which inherits

attractive numerical properties by appropriately embedding the surface in a surrounding volume and extending the PDE to that

volume. Alternatively, one can aim to discretize the surface directly, by defining an approximating triangulated surface and then

applying standard finite-element (or finite-volume) approaches to discretize the PDE on the triangulated surface; see the review

article by Dziuk et al.25 and the many references therein.

Within each class of discretization methodology, specific advances have been made, particularly in the development of fast

solution algorithms. For example, for the finite-volume discretization of the Laplace–Beltrami operator on the surface of the

sphere using latitude–longitude meshes, an optimal multigrid method is known using alternating line relaxation and a trans-

formed restriction operator.26 Multigrid solvers have also been developed for CPM discretizations.27 For uniform triangulations

Numer Linear Algebra Appl. 2017;e2115. wileyonlinelibrary.com/journal/nla Copyright © 2017 John Wiley & Sons, Ltd. 1 of 16
https://doi.org/10.1002/nla.2115

https://doi.org/10.1002/nla.2115
http://orcid.org/0000-0002-6364-0684

2 of 16 ADLER ET AL.

of surfaces, Bey28 and Landsberg et al.29 demonstrate the effectiveness of simple multigrid methods, using natural finite-element

interpolation operators and simple point smoothing. Motivated by the problem of radiation dose planning (as explained in

Section 2), this paper aims to extend these results to locally refined triangulations of the sphere for problems with highly

localized sources, using the fast adaptive composite-grid (FAC) methodology.

The FAC methodology was first proposed in the 1980s15,16 to extend optimal multigrid performance to meshes generated by

structured adaptive mesh refinement algorithms. Many such algorithms generate meshes that are semistructured, which can be

characterized by having distinct “levels” of refinement with regular structure within each level. Although such systems can be

solved using AMG,19 this is naturally inefficient as AMG makes no use of the existing structure in the mesh. FAC, in contrast to

AMG, explicitly requires that the composite grid consist of distinct mesh levels, each of which can be considered independently

of the others. FAC multigrid cycles consist of independent processing on each level, coupled by intergrid-transfer operators

as in standard multigrid, and can be done both multiplicatively16 or additively (asynchronously).17,18 We note that many other

generalizations of the multigrid methodology are possible, including popular subspace and domain decomposition methods30,31;

however, the hierarchical structure of FAC maps naturally onto the hierarchical structure of local mesh refinement that will be

considered here.

The main goal of this paper is to bring together the aspects of mesh refinement and fast multigrid solution for PDEs dominated

by the Laplace–Beltrami operator with localized sources on the surface of the sphere. In particular, we develop and apply

the FAC methodology for the Laplace–Beltrami operator on the sphere, discretized on locally refined meshes. Our motivating

application, radiation dose planning, is explained in Section 2, including the Fokker–Planck limit in which the Laplace–Beltrami

operator is obtained. In Section 3, we propose a structured mesh refinement algorithm, which is later demonstrated to restore

second-order convergence when the source function is singular. Finite-element discretization is used on the resulting nonuniform

triangulation of the sphere, discussed in Section 4. In Section 5, the FAC methodology is explained and adapted into a solution

algorithm for this discretization. Supporting numerical results are presented in Section 6, including for an example with a

nonsmooth solution where mesh refinement is expected to be most beneficial. Conclusions and comments on future work are

given in Section 7.

2 MOTIVATING APPLICATION: RADIATION DOSE PLANNING

As a motivating application, we consider the radiation dose planning problem, which can be posed as an optimal control problem,

min
(f ,g)|(f)=g

J(f), where f is the phase-space density of charged particles in tissue. In this model, J(f) is a cost function representing

irradiation of cancerous tissue, whose minimum value of 0 is achieved when f is sufficiently large within all identified cancerous

tissue in the domain, Ω ⊂ R3, and zero (or sufficiently small) in all healthy tissue. The constraint (f) = g represents the

solution of the linear Boltzmann transport equation

1

c
𝜕f
𝜕t

+ 𝜔 · ∇f + 𝜎t(x⃗,E) f −s f = 0,

subject to initial conditions f (x⃗, 𝜔,E, t0) = f0(x⃗, 𝜔,E) and boundary conditions f (x⃗, 𝜔,E, t) = g(x⃗, 𝜔,E, t) for x⃗ ∈ 𝜕Ω. To define

the notation, f (x⃗, 𝜔,E, t) is the phase-space density of particles at location x⃗ ∈ Ω, moving in direction 𝜔 ∈ S, with energy E at

time t. Here, S is the unit sphere in R3. Key parameters in the problem are the particle speed c, the probability of interaction

(absorption or scattering) per unit distance traveled 𝜎t, and the scattering kernel s. For charged particles, the mean free path,

�̄� = 1∕𝜎t, is relatively small, but most interactions result in relatively small changes in angle, direction, and energy. The control

variable, g(x⃗, 𝜔,E, t), is chosen from the set of admissible configuration of beams of charged particles, to properly irradiate the

cancerous tissue. In real-world applications there are, of course, many practical constraints on the possible values of g imposed

by available equipment and medical safety. Efficient solution algorithms for such optimization problems often rely on efficient

solution algorithms for the constraining PDEs, and it is this “forward problem” that we concentrate on in this paper.

To first simplify this model, we consider the time-independent case of monoenergetic transport (constant c and E) and assume

that all interactions result in scattering, so that

s f (x⃗, 𝜔) =
(
�̄�
)−1

∫S

p(𝜔 · 𝜔′)
2𝜋

f (x⃗, 𝜔′)d𝜔′,

ADLER ET AL. 3 of 16

where p(𝜔 · 𝜔′)∕2𝜋 is the probability density for scattering from direction 𝜔′ ∈ S to direction 𝜔, depending only on the angle

between unit vectors 𝜔 and 𝜔′. In this setting, the governing Boltzmann equation simplifies to

𝜔 · ∇f (x⃗, 𝜔) = s f (x⃗, 𝜔) −
(
�̄�
)−1f (x⃗, 𝜔) =

(
�̄�
)−1

(
∫S

p(𝜔 · 𝜔′)
2𝜋

f (x⃗, 𝜔′)d𝜔′ − f (x⃗, 𝜔)
)

(1)

and the domain of f is now Ω × S. The balance in Equation 1 between the advective term on the left and the scattering term on

the right depends on the properties of the probability density p(𝜇). Of particular interest is the expected value of 𝜇 = 𝜔 · 𝜔′,

defined as �̄� = ∫ 1

−1
𝜇p(𝜇)d𝜇, which gives the expected value of the cosine of the angle between an incident direction 𝜔′ and a

scattered direction 𝜔. In many models of the scattering of charged particles, the scattering occurs very frequently, giving a small

mean free path, �̄�, but each interaction results in only a small deflection, giving �̄� ≈ 1. The Fokker–Planck limit considers the

case where �̄� → 0 and �̄� → 1 in a way such that the transport mean-free path, �̄�tr = �̄�

1−�̄�
= 2

T
> 0, is fixed, defining the linear

scattering power, T. In this case, Börgers et al.32 show that the right-hand side of Equation 1 converges weakly to
1

2�̄�tr
Δ𝜔 f , the

Laplace–Beltrami operator on the sphere. The resulting equation,

𝜔 · ∇f (x⃗, 𝜔) = 1

2�̄�tr
Δ𝜔 f , (2)

is known as the Fokker–Planck equation.

In recent years, several contributions have been made to the literature on both the discretization and efficient solution of

Equation 1, primarily drawing on insight from the limiting case in Equation 2. Discretization in space is typically handled using

upwind finite differences or DG-type discretizations, yielding a natural downstream ordering of the resulting linear systems.

In angle, several discretizations of the unit sphere have been considered, including the Sn (discrete ordinates) discretization,33

popular in the literature on computational transport, but finite-difference and Galerkin finite-element methods have also been

used. Morel et al.34 proposed an angular multigrid method for the one-dimensional analog of Equation 1, with semicoarsening

in the angular variable and a “downstream” Gauss–Seidel relaxation used to resolve the spatial variation. This was extended to

a two-dimensional problem in the work by Börgers et al.,35 for a finite-difference discretization in “flatland,” where the domain

of f is [0, 1]2×[0, 2𝜋]; a domain-decomposition preconditioner for this problem was also considered by Börgers.36 Similar work

has also been done for three-dimensional scattering, in the case of variable E,37–40 considering the Sn discretization scheme.

These papers consider a much broader class of transport problems than in others,35,36,41,42 including both isotropic (neutron) and

anisotropic scattering, as well as the multienergetic case. In studies by Gao et al.,41,42 a uniform-grid finite-element discretization

of S is used in the case of anisotropic scattering, coupled with a finite-difference or DG discretization of the angular terms. A

general conclusion from these works is that efficient and accurate simulation of the Boltzmann equation for charged particles

is possible, provided that a fast solver is available for an accurate discretization of the angular part of the operator.

Considering the motivating application of radiation dose planning, a natural inefficiency arises in the use of uniform dis-

cretizations of the sphere, because the typical boundary conditions impose beams of charged particles that are highly localized

in direction. Thus, in this paper, we consider the question of mesh refinement on the sphere, restricted to the Laplace–Beltrami

operator (or its reaction–diffusion analog). Although extensions to the full Fokker–Planck and linear Boltzmann equation are

necessary for the resulting algorithm to be applied in the context of the radiation dose planning problem, we leave these for

future work. In what follows, we propose a structured mesh refinement strategy that addresses (reaction–)diffusion on the sphere

with localized sources, a natural finite-element discretization that complements this approach, and we extend the FAC multi-

grid approach to these meshes and this discretization. The proposed discretization and refinement scheme are similar to those

recently proposed for neutral-particle transport by Lau et al.43

3 STRUCTURED REFINEMENT OF THE SPHERE

Let S be the unit sphere in R3. We henceforth consider the solution of PDEs on the sphere of the form

−Δ𝜔u(𝜔) + 𝛼u(𝜔) = g(𝜔) ∀𝜔 ∈ S, (3)

where Δ𝜔 represents the Laplace–Beltrami operator on S and 𝛼 ≥ 0 is a constant. We consider specifically the case where

g(𝜔) is a function either with localized support or where it is very small except over a small area on S. Our goal is to define

a nonuniform triangulation of S, such that the variation of g (and, consequently, u) is efficiently resolved by the triangulation.

When discretizing Equation 3 using a finite-element approach (discussed in Section 4), this is essentially equivalent to saying

that the triangulation yields a good discrete approximation for the solution, u(𝜔).

4 of 16 ADLER ET AL.

In this paper, we consider the case where the local structure in g(𝜔) is known in advance and, thus, structured refine-

ment approaches are more natural than adaptive mesh refinement. We start with a “base” triangulation of the sphere, 0.

Natural choices are to use an octahedron or icosahedron as the “zeroth” mesh, with all points of the polyhedron lying on S,

although refinements of such meshes or alternate base triangulations could also be used. Given an existing mesh, our general

(local-then-global) refinement algorithm is considered to have three parts:

1. Mark triangles for local refinement.

2. Refine marked triangles.

3. Refine all triangles (including those created in Step 2).

Whenever a triangle is refined in this algorithm, we consider uniform refinement, bisecting each edge of the triangle to create

new nodes, interconnecting these nodes to create four new subtriangles, and then projecting these nodes onto the surface of

the sphere. If multiple levels of refinement are to be done simultaneously, either in Step 2 or 3, they are done by sequentially

bisecting the edges the appropriate number of times.

Considering the case where g(𝜔) is a point source (or similar) located at the north pole of the sphere, one instance of this

strategy will be to consider the refinement of an octahedron with one vertex located at the north pole. In the algorithm above,

we will then mark all triangles adjacent to the north pole for local refinement, in addition to a global refinement. Figure 1 shows

the resulting triangulations when each refinement step is a single level, dividing each refined triangle into four subtriangles.

Multiple simultaneous levels of refinement are also possible within this algorithm, as is reversing the order of the global and

local refinement. Both of these allow for finer grained control of the relative density of points in the refined region and those

away from the refinement. Figure 2 shows the resulting meshes from the “reverse” (global-then-local) refinement strategy, where

a global refinement step is first applied; then, the resulting elements adjacent to the north pole are refined a second time. In

comparison to the meshes in Figure 1, we see a more focused refinement pattern around the north pole, whereas the global base

mesh extends further into the northern hemisphere. These are, of course, very naïve approaches to mesh refinement, suitable only

to the special case considered here, where g(𝜔) is localized around a known point in the domain. For more broadly applicable

mesh adaptation strategies based on local error estimates of the surface finite-element discretization, see, for example, Demlow

et al.44 and Camacho et al.45

FIGURE 1 Three meshes obtained by applying the local-then-global refinement strategy where marked triangles are those adjacent to the

north pole

FIGURE 2 Three meshes obtained by applying the global-then-local refinement strategy where marked triangles are those adjacent to the north

pole after a global refinement is performed

ADLER ET AL. 5 of 16

The leftmost image in Figure 2 highlights an important property of the resulting triangulations, which is that they are naturally

nonconforming, in the sense that the local refinement step introduces “hanging nodes.” Due to the projection of such nodes onto

the surface of the sphere, these nodes “disconnect” the triangulation; although an additional face could be inserted to fill this

area, we choose not to and, instead, simply enforce continuity in the finite-element approximation defined in the following. This

avoids the introduction of elements with poor shape regularity that would otherwise negatively impact the discrete problem to

be solved.

In what follows, we view such refined meshes as a hierarchy of patches centered at the north pole. If 𝓁 steps of the refinement

algorithm are performed, we can consider a quasi-uniform global mesh 𝓁,0, which is formed by taking the base mesh 0 (an

octahedron for the refined meshes shown in Figures 1 and 2) and refining it 𝓁 times. We then define a sequence of 𝓁 “patches,”

with 𝓁,1 denoting the first refinement patch around the north pole, starting from the elements created by the first local refinement

step that have also been uniformly refined 𝓁 times. Thus, if h0 is a representative meshwidth for the global mesh 𝓁,0, then the

representative meshwidth for 𝓁,1 is h1 ≈ h0∕2, indicating that the triangles in 𝓁,1 are at one level of refinement finer than those

in 𝓁,0. Note that, due to the projection in both the local and global refinement steps, there will be variations in edge lengths and

triangle areas that would not be present for refinement in the plane. To continue, we define 𝓁,k to be the elements created in the

kth local refinement step, uniformly refined 𝓁 times. Following the aforementioned argument, the representative meshwidth for

𝓁,k is hk ≈ hk−1∕2, and the elements in 𝓁,k can be seen to be uniformly refined k times relative to the global mesh 𝓁,0.

It is important for what follows to emphasize that each patch, 𝓁,k, contains all elements that are covered by 𝓁,k+1 (and all finer

patches), but at the same level of resolution as the nonoverlapped triangles in 𝓁,k. In order to properly define the triangles active

in composite meshes of varying levels of refinement, we also define the “overlap” between 𝓁,k and 𝓁,k+1 as those elements in

𝓁,k that are covered by 𝓁,k+1. Formally, one way to express this is as

 ′
𝓁,k =

{
T ∈ 𝓁,k | all nodes of T are also nodes of triangles in 𝓁,k+1

}
.

For a given number of levels of refinement, 𝓁, the composite mesh can then be defined as

𝓁 =

(
𝓁−1⋃
k=0

(𝓁,k ⧵  ′
𝓁,k

))
∪ 𝓁,𝓁 . (4)

Although the notation for 𝓁 would be slightly more transparent with an alternate definition for 𝓁,k ⧵  ′
𝓁,k, the FAC multigrid

method discussed in the following is more natural using this notation. An illustration of this definition of the composite mesh is

given in Figure 3; although this figure is restricted to the plane, it matches the connectivity of the composite mesh on the northern

hemisphere of the sphere using the global-then-local refinement pattern as shown in Figure 2. Note that, in the particular case of

FIGURE 3 Decomposition of composite meshes 0, 1, and 2 into patches for global-then-local refinement pattern on a square in the plane

6 of 16 ADLER ET AL.

refinement by a single level of refinement in each local/global step, we have the natural relationship that  ′
𝓁,k = 𝓁−1,k+1, when

the latter is well defined (i.e., when 𝓁 − 1 ≥ k + 1), but that this relationship does not hold for general refinement patterns. As

such, we cannot directly simplify the notation in Equation 4, unless we make additional assumptions.

4 COMPOSITE-GRID FINITE-ELEMENT DISCRETIZATION

To discretize Equation 3, we consider a piecewise linear finite-element discretization on the “composite grid” formed by the

refinement process discussed earlier. Discretization then follows by the surface finite-element method (see, e.g., the work by

Dziuk et al.25), which we adapt to suit the composite-grid setting.

On any given (flat) triangular face T with normal direction n⃗T , we define the tangential gradient on T as ∇Tu = ∇ū −(
∇ū · n⃗T

)
n⃗T , where u is a smooth extension of u ∶ T → R into a neighborhood of T inR3. We note that if T happens to lie parallel

to the xy plane, for example, this reduces simply to the two-dimensional gradient, extended by zero in the z-direction. This allows

us to define the weak form of the Laplace–Beltrami operator in Equation 3 on a triangulation 𝓁 as finding u ∈ H1(𝓁) such that

a𝓁(u, v) =
∑

T∈𝓁
∫T

(∇Tu · ∇Tv + 𝛼uv) =
∑

T∈𝓁
∫T

g𝓁v = ⟨g𝓁 , v⟩𝓁 ∀v ∈ H1(𝓁), (5)

where H1(𝓁) is defined in the natural way. In what follows, we also make use of the space C0(𝓁) for functions mapping

from 𝓁 into R. This space is defined in the natural way both within any triangle, T ∈ 𝓁 , and across common edges between

triangles, but extended to the nonconforming situation at boundaries between two levels of refinement in 𝓁 . In this case,

continuity is still enforced on the nonconforming edges in 𝓁 , by defining arc-length parameterizations ek ∶ [0, 1] → 𝓁 and

ek+1 ∶ [0, 1] → 𝓁 of the single (coarse) edge and multiple (fine) edges, respectively, with ek(0) = ek+1(0) and ek(1) = ek+1(1)
marking the two common nodes, and requiring that f (ek(t)) = f (ek+1(t)) for 0 ≤ t ≤ 1 for all functions f ∈ C0(𝓁). There are, of

course, many possible parameterizations of the two sets of edges; we assume both ek and ek+1 are arc-length parameterizations

in order to impose the natural continuity condition that the function value at the midpoint of a coarse edge matches that at the

middle node in a refinement of that edge.

Our surface finite-element discretization is, then, defined on a triangulation 𝓁 , by taking

𝓁 =
{

u𝓁 ∈ C0(𝓁)|∀T ∈ 𝓁 , u𝓁 is linear on T
}
, (6)

giving a standard piecewise linear approximation on each triangle in 𝓁 . The discrete weak form over 𝓁 is then defined by

restricting Equation 5 to 𝓁 , that is, finding u𝓁 ∈ 𝓁 such that a𝓁(u𝓁 , v𝓁) = ⟨g𝓁 , v𝓁⟩𝓁 for all v𝓁 ∈ 𝓁 . Note that, in the

nonconforming case, the requirement that u𝓁 ∈ C0(𝓁) “slaves” any hanging nodes in the triangulation to take the interpolated

values at corresponding points on the unrefined side of the interface. This weak form presumes, however, that the source term

g𝓁 is defined naturally on 𝓁 , which is not the case because g ∶ S → R in the Laplace–Beltrami Equation in Equation 3. In

order to achieve the best possible order of approximation, we must ensure that g𝓁 approximates g in a suitable way (see, e.g.,

studies by Dziuk et al.25 and Dziuk46). In what follows, we extend the source function g to its approximation g𝓁 ∶ 𝓁 → R by

projecting values from S onto 𝓁 . In particular, for a point, x ∈ 𝓁 , we draw the straight-line path from the origin through x to

a point 𝜔 ∈ S and fix g𝓁(x) = g(𝜔).
When 𝛼 > 0, both the weak form in Equation 5 and its restriction to 𝓁 have unique solutions (see, e.g., studies by Dziuk

et al.25 and Dziuk46). In the case where 𝛼 = 0, we must impose an additional constraint on both u𝓁 and g𝓁 in order to ensure

unique solvability. We extend the natural conditions from the case of planar domains, requiring that ⟨g𝓁 , 1⟩𝓁 = 0, yielding a

consistent linear system for the finite-element approximation. To ensure the uniqueness of u𝓁 , we can either fix the value of u𝓁
at a point in 𝓁 or impose a similar orthogonality condition. In the experiments to follow (only when 𝛼 = 0), we choose the

former and fix the value of u𝓁 at the south pole to be zero.

In what follows, we make use of two decompositions of 𝓁 . A natural overlapping decomposition is to write 𝓁 = ⊕𝓁
k=0

𝓁,k,

where

𝓁,k =
{

uk ∈ C0(𝓁,k)| uk is piecewise linear on 𝓁,k} .
To represent 𝓁 without overlap, we introduce the subspaces

𝓁,k =
{

uk ∈ C0( ′
𝓁,k)| uk is piecewise linear on  ′

𝓁,k

}
,

ADLER ET AL. 7 of 16

noting that 𝓁,k ⊂ 𝓁,k (because  ′
𝓁,k ⊂ 𝓁,k) and that 𝓁,k ⊂ 𝓁,k+1 (because 𝓁,k+1 covers  ′

𝓁,k). An equivalent, but

nonoverlapping, decomposition of 𝓁 is then given by

𝓁 = 𝓁,𝓁 ⊕
𝓁−1
k=0

(𝓁,k ⧵𝓁,k
)
,

where boundaries between levels of refinement are implicitly constrained to match the coarser level representation due to the

requirement that 𝓁 ⊂ C0(𝓁). Considering the decomposition of the composite meshes in Figure 3, we note that 𝓁,k is the

piecewise linear finite-element space over the shaded patches  ′
𝓁,k, whereas 𝓁,k is the piecewise linear finite-element space over

the entire patch 𝓁,k, including the shaded patch. In what follows, we will make use of two natural finite-element interpolation

operators, Qk ∶ 𝓁,k → 𝓁,k and Pk ∶ 𝓁,k → 𝓁,k+1. Although we can consider these both as operators acting on the function

spaces and as matrices acting on vectors of coefficients for basis expansions, in what follows we will exclusively consider the

matrix representation of these operators.

5 FAC METHOD

To solve the discretized linear system on the composite mesh 𝓁 ,

Find u𝓁 ∈ 𝓁 such that a𝓁(u𝓁 , v𝓁) = ⟨g𝓁 , v𝓁⟩𝓁 ∀v𝓁 ∈ 𝓁 , (7)

we use the FAC methodology.15–18 This is based on the overlapping composite-grid decomposition of 𝓁 , where each “patch”

𝓁,k serves as a level in the multigrid hierarchy.

There are many variations on the FAC methodology. The original FAC algorithm of McCormick15 and McCormick et al.16

is based on a decomposition of the mesh into overlapping levels, with the discrete weak form solved sequentially on each level

(from coarsest to finest). To break this sequentiality, asynchronous FAC (AFAC) methods were proposed and studied by Lee

et al.17,18 and McCormick et al.,47 where approximations for each level are computed in parallel and the differences of these

approximations are used to correct the composite-grid approximation. AFACx replaces the solves on each level within AFAC

with the application of simple relaxation approaches. Here, we consider an “FAC V-cycle,” where each level in the composite

grid is treated by a simple relaxation scheme (lexicographical Gauss–Seidel), but the processing is sequential, as in standard

multigrid. To enable the V-cycle to be used as a preconditioner for the conjugate gradient (CG) algorithm, we use symmetric

relaxation ordering and a V(1,1) cycling scheme.

To fully describe the FAC V-cycle, we define two hierarchies of discrete operators corresponding to the constituent pieces

of the discretized weak form in Equation 7. Restricting to 𝓁,k, we define the system matrix Ak and right-hand side gk by the

weak form ∑
T∈𝓁,k ∫T

(∇Tu · ∇Tv + 𝛼uv) =
∑

T∈𝓁,k ∫T
gv,

for u, v ∈ 𝓁,k, where, again, we project g ∶ S → R onto each triangle, T, in order to define the integrals on the right-hand side.

Similarly, restricting to  ′
𝓁,k, we define the system matrix Ãk and right-hand side g̃k by the weak form∑

T∈ ′
𝓁,k
∫T

(∇Tu · ∇Tv + 𝛼uv) =
∑

T∈ ′
𝓁,k
∫T

gv,

for u, v ∈ 𝓁,k, with the corresponding projection on the right-hand side.

Although the multigrid interpolation operators were defined earlier, some subtlety exists in the FAC restriction step in order to

form the corresponding residual on each coarser level after relaxation on the next finer level of the composite-grid hierarchy. To

simplify this, consider restriction from level k in the hierarchy. After relaxation on level k, the 𝓁,k residual is naturally defined

as rk = gk − Akuk, where uk is the discrete approximation after relaxation. Two residuals must be considered over 𝓁,k−1, that

over 𝓁,k−1, r̃k−1 = g̃k−1−Ãk−1ũk−1, and that over 𝓁,k−1 itself, rk−1 = gk−1 − Ak−1uk−1, where ũk−1 and uk−1 are the existing

approximations on that level. Again referring to the decomposition of the composite grid pictured in Figure 3, we note that r̃k−1

is the residual over the shaded patch on level k − 1, whereas rk−1 is the residual over the entire coarse level. Note that rk−1 and

r̃k−1 should agree over the interior of the patch  ′
𝓁,k−1

, but they will differ along the boundary of  ′
𝓁,k−1

(and only rk−1 will be

defined on 𝓁,k−1 ⧵  ′
𝓁,k−1

). The restriction step can, thus, be expressed as

rk−1 ← rk−1 + Qk−1

(
PT

k rk − r̃k−1

)
. (8)

In this expression, the term PT
k rk is the natural restriction of the (updated) grid k residual to  ′

𝓁,k−1
(the shaded patch in Figure 3),

while applying Qk−1 to this vector simply extends it (by zero) to all of 𝓁,k−1. The difference rk−1 − Qk−1r̃k−1 is, in contrast,

8 of 16 ADLER ET AL.

zero within the patch, and equal to the existing residual on 𝓁,k−1 ⧵  ′
𝓁,k−1

. Thus, the restriction step in Equation 8 appropriately

accounts for the combined purpose of mesh 𝓁,k−1, to provide both a correction to the refined mesh 𝓁,k and an approximation

to the solution on the nonoverlapped mesh, 𝓁,k−1 ⧵  ′
𝓁,k−1

. Proper treatment at the boundary of the patch is provided by the

natural finite-element interpolation operators, Qk−1 and Pk.

Pseudocode for the FAC V-cycle is given in Algorithm 1. On the “pre-relaxation” side of the cycle, this essentially matches a

standard multigrid V-cycle, with a relaxation step and a fine-grid residual calculation; the only difference is in the restriction step,

which takes the form in Equation 8, rather than a standard restriction operation. On the global mesh 𝓁,0, a standard geometric

multigrid V(1,1)-cycle is used as the solver, progressing through coarsened meshes 𝓁−1,0, 𝓁−2,0, … until the original base

mesh is reached, where either an exact solve is performed or a few sweeps of relaxation are used to approximate the coarsest

grid solution. The “post-relaxation” side of the cycle is also standard, for both the global mesh and the composite grid. In order

to ensure symmetry of the resulting cycle, we use a forward–backward ordering of relaxation, with forward lexicographical

sweeps used for pre-relaxation and reverse lexicographical sweeps used for post-relaxation. When used as a preconditioner for

the CG algorithm, the right-hand side vectors, gk and g̃k, on all meshes are replaced with the current CG residual on each mesh,

and zero initial guesses are used for uk and ũk on all meshes. We use a single FAC V(1,1)-cycle as the preconditioner when

doing so.

To illustrate Algorithm 1, we consider the cycle on 2, as shown in the bottom line of Figure 3. The algorithm begins with a

sweep of relaxation on 2,2, after which a residual is calculated. The restriction step to 2,1, as in Equation 8, can be thought of

in two pieces. Outside of the patch  ′
2,1

, we seek to directly approximate the solution and, so, define the current residual there

by r1 − Q1r̃1. Within the patch, we aim to compute a correction to the current approximation and, thus, augment this by the

restricted residual over the patch, Q1PT
2
r2. A similar sequence is then followed on 2,1, with a sweep of relaxation, a residual

calculation, and restriction via Equation 8 to the global mesh 2,0. After a V-cycle on the global mesh, a correction over the

patch  ′
2,0

is interpolated to 2,1. After relaxation on 2,1, a correction over the patch  ′
2,1

is interpolated to 2,2, followed by

relaxation on this finest level.

6 NUMERICAL EXPERIMENTS

For the numerical results presented here, we use a C++ implementation of the FAC algorithm, using the modular finite-element

library MFEM48 for managing the discretization, mesh, and interpolation operators. All tests were run in serial on a single

node of the Tufts High-Performance Computing Research Cluster, using a 2.2-GHz Intel Xeon CPU and 128 GB available

RAM, with code compiled with gcc using full optimizations. For comparison, we present numerical results using the AMG

package BoomerAMG.49 Unless otherwise stated, we use the preconditioned CG (PCG) implementation in Hypre50 to accelerate

convergence, as this is found to be more efficient than using the FAC algorithm as a stationary iteration. For all tests, we

use a fixed relative stopping tolerance based on the standard estimate of the A-norm of the error within the preconditioned

CG algorithm, requiring that
(

z(m)
𝓁

)T
r(m)
𝓁 ≤ 10−8

(
z(0)𝓁

)T
r(0)𝓁 , where r(m)

𝓁 is the full residual on the finest level (level 𝓁) of the

hierarchy after m iterations, and z(m)
𝓁 is the so-called preconditioned residual, obtained by applying the FAC V-cycle to r(m)

𝓁 .

We note that for the tests with stationary iterations, this is a nonstandard stopping criterion, because neither of these vectors is

typically stored explicitly in a multigrid code. However, we use this here for consistency between tests.

ADLER ET AL. 9 of 16

dofs
R

e
la

ti
v
e

e
rr

o
r

Standard refinement

Reverse refinement

Uniform mesh

reference

FIGURE 4 Convergence plot: smooth solution for uniform, local-then-global (standard), and global-then-local (reverse) refinement patterns

6.1 Smooth source term
Our first numerical experiments consider the reaction–diffusion analog on the sphere,

−𝜏

2
Δ𝜔u(𝜔) + u(𝜔) = g(𝜔), (9)

where g(𝜔) is calculated so that the solution is given by

u(𝜃, 𝜙) = 1

2

∞∑
i=0

(2i + 1)e−i(i+1)𝜏∕2Pi (cos 𝜃) ,

where 𝜔 ∈ S is written as 𝜔 = (𝜃, 𝜙) for polar angle 𝜃 and azimuthal angle 𝜙, Pi(x) is the ith Legendre polynomial on [−1, 1],
and 𝜏 = 0.001. This solution arises as the fundamental solution of the heat equation on the sphere, with initial data as a (scaled)

delta function at the north pole (𝜃 = 0), after time 𝜏 has elapsed. Thus, Equation 9 models the behavior of the first time-step in

an implicit-in-time integration of the heat equation with time-step 𝜏.

As in the planar case, the fundamental solution to the heat equation is in C∞(S); thus, we expect an optimal order of approx-

imation already on a uniform grid. Because we use a piecewise linear approximation, we expect second-order convergence in

the L2 error. However, because the solution is highly peaked around 𝜃 = 0, we expect to see some benefit, in terms of the accu-

racy per degree of freedom, in the adaptive meshes considered earlier. Figure 4 plots the relative L2 error for a uniform mesh

and two refined meshes, generated by the local-then-global (“standard”) and global-then-local (“reverse”) refinement patterns

discussed earlier and pictured in Figures 1 and 2, respectively. All three methods clearly offer convergence with errors propor-

tional to the inverse of the number of degrees of freedom. For the uniform mesh, this is equivalent to second-order convergence

because the surface of the sphere is two dimensional. As expected, the locally refined meshes offer better accuracy per degree

of freedom by concentrating elements toward the poles, where the greatest variation in the solution occurs. At 12.5 million

degrees of freedom using the local-then-global refinement pattern, the resulting solution has a relative error in this measure of

1.9 × 10−4, compared with that of 3.3 × 10−3 when using 16.7 million degrees of freedom on a uniform mesh, showing a clear

advantage for the refined meshes.

The advantages in accuracy of the locally refined meshes are, of course, only of benefit if there is no significant additional

cost associated with the solution of the resulting linear systems. As a baseline for comparison, Tables 1 and 2 present results for

geometric multigrid with rediscretization used for coarse-grid operators on the uniform mesh discretization, both as a standalone

iteration (Table 1) and as a preconditioner for CG (Table 2). In these tables, and those that follow, we report grid sizes measured

by the number of degrees of freedom in the resulting linear system (i.e., the number of nodes in the mesh), the relative error in

the discrete solution, measured in the L2 norm (as displayed in Figure 4), the setup time for the geometric multigrid method,

and both the solve time and number of iterations for either the stationary multigrid iteration or the multigrid-preconditioned

CG algorithm. The setup time includes the total time required to sequentially refine the octahedral base mesh to each level of

refinement in the multigrid hierarchy, discretize the equation on each of these meshes, and determine the grid-transfer operators

between levels of the hierarchy. Two noticeable conclusions are possible from this data. First, that both setup and solve times

scale roughly linearly with the number of degrees of freedom, as is expected. Second, the total time-to-solution is dominated by

the setup time, which is consistently a factor of six or more times more costly than the solve time. This illustrates a fundamental

difficulty of working with triangulations of surfaces, that mesh refinement and discretization require substantially more effort

10 of 16 ADLER ET AL.

TABLE 1 Finite-element accuracy and solver performance for example with smooth solution on

uniform meshes, using multigrid (MG) as a stationary iteration

DOFs Relative L2 error Setup time Solve time # of MG iterations

16386 2.84e+00 0.12 0.016 10

65538 7.89e-01 0.49 0.084 13

262146 2.07e-01 2.09 0.42 15

1048578 5.25e-02 8.73 1.78 15

4194306 1.32e-02 35.55 7.78 15

16777218 3.31e-03 143.2 33.89 15

TABLE 2 Finite-element accuracy and solver performance for example with smooth solution on

uniform meshes, using multigrid-preconditioned CG

DOFs Relative L2 error Setup time Solve time # of PCG iterations

16386 2.84e+00 0.12 0.014 7

65538 7.89e-01 0.49 0.063 8

262146 2.07e-01 2.06 0.27 8

1048578 5.25e-02 8.68 1.26 9

4194306 1.32e-02 35.26 5.46 9

16777218 3.31e-03 143.2 23.46 9

TABLE 3 Finite-element accuracy and fast adaptive composite-grid solver performance for

example with smooth solution on meshes following the local-then-global refinement pattern, using

multigrid (MG) as a stationary iteration

DOFs Relative L2 error Setup time Solve time # of MG iterations

48894 5.05e-02 0.40 0.077 15

196094 1.25e-02 1.63 0.34 15

785406 3.10e-03 6.84 1.42 15

3143678 7.72e-04 28.38 6.01 15

12578814 1.93e-04 114.9 26.02 15

50323454 4.81e-05 467.7 111.4 15

TABLE 4 Finite-element accuracy and fast adaptive composite-grid solver performance for

example with smooth solution on meshes following the local-then-global refinement pattern, using

multigrid-preconditioned CG

DOFs Relative L2 error Setup time Solve time # of PCG iterations

48894 5.05e-02 0.40 0.053 9

196094 1.25e-02 1.63 0.23 9

785406 3.10e-03 6.85 0.97 9

3143678 7.72e-04 28.37 4.11 9

12578814 1.93e-04 114.6 17.63 9

50323454 4.81e-05 468.5 74.97 9

than they do on planar regions, even when using uniform meshes. Comparing the solve times in Tables 1 and 2, we see that

there is a clear advantage to using the multigrid method as a preconditioner, although the stationary iteration also offers quite

acceptable performance.

Results for the stationary FAC algorithm applied to the locally refined meshes using the local-then-global refinement pattern

are shown in Table 3. Corresponding results for multigrid-preconditioned CG are shown in Tables 4 (for the local-then-global

refinement pattern) and 5 (for the global-then-local refinement pattern). Most notable from these results is that there is no

particular “penalty” to pay in terms of FAC setup and solve times when using these refined meshes. For both refinement pat-

terns, setup time scales roughly linearly with the number of degrees of freedom, as do solve times; again, there is clearly a

higher cost to the setup phase of the algorithm, by the same factor of about six or more, except on the finest mesh of the

ADLER ET AL. 11 of 16

TABLE 5 Finite-element accuracy and fast adaptive composite-grid solver performance for

example with smooth solution on meshes following the global-then-local refinement pattern, using

multigrid-preconditioned CG

DOFs Relative L2 error Setup time Solve time # of PCG iterations

24450 1.28e-01 0.19 0.026 9

98050 3.13e-02 0.77 0.11 9

392706 7.76e-03 3.27 0.47 9

1571842 1.93e-03 13.80 1.95 9

6289410 4.81e-04 55.65 8.28 9

25161730 1.20e-04 228.4 35.64 9

TABLE 6 Algebraic multigrid (AMG) solver performance for example with smooth

solution on meshes following the local-then-global refinement pattern

DOFs Matrix/RHS setup AMG setup Solve # of PCG iterations

48894 0.70 0.08 0.11 11

196094 2.03 0.34 0.51 12

785406 7.37 1.34 2.32 12

3143678 28.4 5.33 9.75 12

12578814 113.7 21.04 39.8 12

TABLE 7 Algebraic multigrid (AMG) solver performance for example with smooth

solution on meshes following the global-then-local refinement pattern

DOFs Matrix/RHS setup AMG setup Solve # of PCG iterations

24450 0.51 0.04 0.05 11

98050 1.27 0.15 0.25 12

392706 4.43 0.67 1.13 12

1571842 16.81 2.75 4.83 12

6289410 67.01 10.8 19.98 12

25161730 267.5 45.39 90.67 12

local-then-global refinement pattern, with approximately 50 million degrees of freedom, where the factor is only five. Note also

that the local-then-global refinement pattern offers slightly better accuracy per degree of freedom than the global-then-local pat-

tern. Comparing Tables 3 and 4, we again see that the stationary iteration performs well, but that there is a notable improvement

in iteration counts (from 15 to 9) and solve time (a reduction of about 30% on the finest grids), when using it as a preconditioner

for CG. For this reason, we only consider the multigrid-preconditioned CG algorithm in the remaining examples in this paper.

A further comparison for the efficiency of the FAC algorithm is against the performance of AMG, for which we use the

BoomerAMG code from the Hypre package49,50 with standard parameters. Tables 6 and 7 detail solver timings and iteration

counts for this comparison. For clarity, we break out the mesh-refinement and finite-element discretization times in the column

labeled “Matrix/RHS setup” from the actual setup time consumed by the AMG algorithm, computing the AMG coarse meshes

and interpolation operators, as well as the Galerkin coarse-grid operators. Comparing the timings for the local-then-global

refinement pattern in Table 6 to those for FAC in Table 4, we see that the cost for the construction of the composite mesh and

finite-element assembly of the matrix and right-hand side is roughly the same as the setup cost for the full FAC algorithm.

Additional to this is the cost of the AMG setup and, then, a higher solve cost for AMG, due both to a small increase in the

number of iterations and a larger increase in the cost per iteration. We note also in this case that the lower memory overhead of

the FAC algorithm allows us to solve a problem with 50 million degrees of freedom using FAC, which we could not do within

the memory available to us with AMG. Similar behavior is also seen for the global-then-local refinement pattern, with results

for AMG in Table 7 for comparison to those in Table 5. Here, there is a consistent but anomalous penalty of about 20% in CPU

time for the construction of the composite mesh and finite-element assembly within the AMG code compared to that in the FAC

code. This is due to an increase in time in the composite mesh generation function within our finite-element package, MFEM,

for this particular refinement pattern in the code that calls AMG. Although it should be possible to eliminate this difference, it

is small enough that we have not done so in the results reported here. There is also a larger increase in solve time (that cannot be

12 of 16 ADLER ET AL.

readily eliminated) for the AMG approach compared to the local-then-global refinement pattern, about a factor of 2.5 compared

to a factor of 2, coming from increased complexity in the AMG hierarchy for this refinement pattern. We note that, due to the

use of aggressive coarsening,51 the AMG grid complexities (computed as the sum of the number of degrees of freedom on all

levels of an AMG hierarchy divided by the number on the finest level) are somewhat lower than they are for the FAC algorithm,

but that the AMG operator complexities (the sum of the number of nonzero elements in the matrix on all levels divided by the

number on the finest level) are slightly higher, due to stencil growth in the coarse-grid operators.

Overall, two main themes emerge from these results. First, there is no substantial penalty in terms of computational cost

per degree of freedom for solving the problems on refined meshes using FAC compared to geometric multigrid on uniform

meshes. This, then, validates the use of refined meshes for problems with highly localized solutions, such as the example con-

sidered here. Furthermore, there is a clear benefit to the use of FAC in this setting over the use of a black-box approach, such

as AMG. In particular, the practical costs of the full setup of the FAC algorithm are naturally included in those of assembling

the composite-mesh finite-element discretization. This coupled with the greatly improved efficiency of the resulting FAC solve

phase, in comparison to either the combined AMG setup and solve phases or just the AMG solve phase, shows the true algo-

rithmic potential of using a semistructured approach with measured speedup factors of two to four times and notably lower

memory requirements.

6.2 Impulse source term
In contrast to the example with a smooth solution considered earlier, we now consider the problem

−Δ𝜔u =
∞∑

i=0

2i + 1

4𝜋
Pi(cos 𝜃) − 1

4𝜋
,

u(𝜋, 𝜙) = 0 ∀𝜙,

which has an exact solution

u = − 1

2𝜋
log

(
sin

(
𝜃

2

))
.

We note that the series term on the right-hand side represents the Dirac delta function at the north pole, and should be interpreted

in the distributional sense, rather than as a convergent sum. In the distributional sense, its integral over S is one and, so, the

constant shift on the right-hand side is necessary so that the total source term then integrates to zero for consistency. As noted

earlier, the condition imposed at the south pole, u(𝜋, 𝜙) = 0, guarantees uniqueness; at the discrete level, this is imposed just

as a typical Dirichlet boundary condition would be, albeit at a single point. Figure 5 displays the relative error measured in

the L2 norm between the finite-element solutions and the continuum solution, calculated by omitting those elements adjacent

to the north pole to avoid numerical issues evaluating the solutions there. As expected, we now see the clear benefit in rate of

convergence given by the adaptive meshes in contrast to the first-order convergence of the uniform mesh (because the mesh

size scales as the inverse square root of the number of degrees of freedom in the uniform mesh discretization).

dofs

R
e
la

ti
v
e

e
rr

o
r

Standard Refinement

Uniform mesh

reference

reference

FIGURE 5 Convergence plot: impulse source term for uniform and local-then-global (standard) refinement patterns

ADLER ET AL. 13 of 16

TABLE 8 Finite-element accuracy and fast adaptive composite-grid solver performance for

example with impulse source term on meshes following local-then-global refinement pattern

DOFs Relative L2 error Setup time Solve time # of PCG iterations

48894 3.56e-04 0.31 0.058 10

196094 9.97e-05 1.30 0.28 11

785406 2.76e-05 5.54 1.16 11

3143678 7.55e-06 23.45 4.91 11

12578814 2.05e-06 94.94 22.86 12

50323454 5.54e-07 401.3 123.5 12

TABLE 9 Algebraic multigrid (AMG) solver performance for example with impulse source term

on meshes following local-then-global refinement pattern

DOFs Matrix/RHS setup AMG setup Solve # of PCG iterations

48894 0.63 0.09 0.14 14

196094 1.68 0.34 0.59 14

785406 5.99 1.37 2.65 14

3143678 23.13 5.41 11.83 15

12578814 91.99 21.22 45.33 14

Tables 8 and 9 provide timing statistics for FAC and AMG applied to this problem on the refined mesh using just the

local-then-global refinement pattern for brevity. Aside from a slight increase in the number of iterations for each (from 9 to 12

for FAC and 12 to 15 for AMG), the details strongly mirror those for the smooth solution presented earlier. Notably, the setup

times between the two approaches are roughly equal, with a small added amount for FAC, noticeable only on the finest meshes

(corresponding to the time needed to generate the FAC interpolation operators on top of the composite-mesh finite-element

assembly). The solve times for FAC are again about a factor of one half of those for AMG, or about one third if the AMG setup

and solve times are counted together. As before, the lower memory footprint of FAC allows the solution of the largest problem

size, with over 50 million degrees of freedom, whereas AMG could not solve this problem within the memory available.

6.3 Two-spot problem
To demonstrate the flexibility of the FAC algorithm, we next consider an example with a smooth solution that changes rapidly

at two points in the domain. To construct this example, we again consider Equation 9, now with source function g(𝜔) chosen

so that the solution is given by

u(𝜃, 𝜙) = 1

2

∞∑
i=0

(2i + 1)e−i(i+1)𝜏∕2Pi (sin 𝜃 cos𝜙) + 1

2

∞∑
i=0

(2i + 1)e−i(i+1)𝜏∕2Pi (cos 𝜃) ,

with 𝜏 = 0.001. This solution arises as a linear combination of fundamental solutions to the heat equation with initial data as the

sum of two delta functions, one at the north pole (𝜃 = 0) and one on the equator (𝜃 = 𝜋∕2, 𝜙 = 0). Thus, this example models

the behavior of the first time-step in an implicit-in-time integration of the heat equation with time-step 𝜏 and a “two-spot” initial

condition. To match the variation in the solution, we use a corresponding two-spot refinement pattern, with sample meshes

pictured in Figure 6. In this example, we focus on the global-then-local refinement pattern, simply because this allows for two

disjoint regions of refinement. Note now that each refinement patch consists of two (disconnected) pieces, but that the FAC

algorithm as given earlier remains well defined in such a case.

FAC and AMG solver performances are detailed in Tables 10 and 11, respectively, with accuracy proportional to the number

of degrees of freedom verified by the relative L2 errors reported in Table 10. Similarly to the global-then-local refinement pattern

results for the example in Section 6.1, these results show a consistent anomaly in the time required for the mesh construction

and finite-element assembly in the AMG results. Aside from this, the same general conclusions can be drawn, with the FAC

solve phase being about 2.5 times faster than that of the AMG solve phase, and over four times faster than the combined AMG

setup and solve phases for the finest mesh with over 33.5 million degrees of freedom.

14 of 16 ADLER ET AL.

FIGURE 6 Three meshes obtained by applying the global-then-local refinement strategy for two-spot problem

TABLE 10 Finite-element accuracy and fast adaptive composite-grid solver performance for

two-spot problem

DOFs Relative L2 error Setup time Solve time # of PCG iterations

32514 1.81e-01 0.27 0.032 8

130562 4.43e-02 1.06 0.15 9

523266 1.10e-02 4.54 0.64 9

2095106 2.73e-03 18.88 2.66 9

8384514 6.80e-04 76.77 11.33 9

33546242 1.70e-04 311.9 48.63 9

TABLE 11 Algebraic multigrid (AMG) solver performance for two-spot problem

DOFs Matrix/RHS setup AMG setup Solve # of PCG iterations

32514 0.60 0.05 0.08 11

130562 1.63 0.22 0.33 12

523266 5.89 0.91 1.52 12

2095106 22.50 3.65 6.47 12

8384514 90.24 14.36 26.52 12

33546242 369.5 73.0 140.31 12

7 CONCLUSIONS AND FUTURE WORK

In this paper, we extend the FAC algorithm to finite-element discretizations on triangulated surfaces, particularly focused

on structured-grid refinements of the sphere. The FAC algorithm is shown to be well suited for such problems, with the

composite-grid transfer operation naturally expressed in terms of two finite-element interpolation operators. For problems

with localized sources, improved finite-element accuracy is seen using refined meshes, including restoration of effectively

second-order accuracy for a problem with singular source.

Given the wide body of research currently ongoing into the accurate discretization of PDEs posed on surfaces or manifolds,

a natural direction for future work is the comparison of FAC and multigrid algorithms for surface finite-element discretizations

with solution algorithms for the CPM or other discretization approaches. Additionally, the work presented here was motivated

by the development of fast algorithms for solution of the Boltzmann transport equation in (or close to) the Fokker–Planck limit.

A key piece of future work is the coupling of the FAC algorithm presented here with more general scattering kernels and a

suitable spatial discretization to address that problem in more detail.

ORCID

Scott P. MacLachlan http://orcid.org/0000-0002-6364-0684

REFERENCES
1. Strikwerda JC. Finite difference schemes and partial differential equations. 2nd ed. Philadelphia, PA: Society for Industrial and Applied

Mathematics (SIAM); 2004. https://doi.org/10.1137/1.9780898717938

2. LeVeque RJ. Finite difference methods for ordinary and partial differential equations: Steady-state and time-dependent problems. Philadelphia,

PA: Society for Industrial and Applied Mathematics (SIAM); 2007. https://doi.org/10.1137/1.9780898717839

http://orcid.org/0000-0002-6364-0684
http://orcid.org/0000-0002-6364-0684
https://doi.org/10.1137/1.9780898717938
https://doi.org/10.1137/1.9780898717839

ADLER ET AL. 15 of 16

3. Brenner S, Scott L. The mathematical theory of finite element methods: Texts in applied mathematics, vol. 15. New York: Springer-Verlag; 1994.

4. Braess D. Finite elements. 2nd ed. Cambridge: Cambridge University Press; 2001.

5. Eymard R, Gallouët T, Herbin R. Finite volume methods. Handbook of numerical analysis. Amsterdam: North-Holland, 2000; p. 713–1020.

6. Berger MJ, Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations. J Comput Phys. 1984;53(3):484–512. https://doi.

org/10.1016/0021-9991(84)90073-1

7. Gui W, Babuska I. The h, p, and h-p versions of the finite element method in 1 dimension, part iii. the adaptive hp version. Numer Math. 1986;49:

659–683. https://doi.org/10.1007/BF01389733

8. Bell J, Berger M, Saltzman J, Welcome M. Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J Sci Comput.

1994;15(1):127–138. https://doi.org/10.1137/0915008

9. Verfürth R. A posteriori error estimation and adaptive mesh-refinement techniques. J Comput Appl Math. 1994;50(1-3):67–83. https://doi.org/

10.1016/0377-0427(94)90290-9

10. Morin P, Nochetto RH, Siebert KG. Convergence of adaptive finite element methods. SIAM Rev. 2002;44(4):631–658. https://doi.org/10.1137/

S0036144502409093

11. Bank RE, Holst M. A new paradigm for parallel adaptive meshing algorithms. SIAM Rev. 2003;45(2):291–323. https://doi.org/10.1137/

S003614450342061

12. Briggs WL, Henson VE, McCormick SF. A multigrid tutorial. 2nd ed. Philadelphia: SIAM Books; 2000.

13. Trottenberg U, Oosterlee CW, Schüller A. Multigrid. London: Academic Press; 2001.

14. Dendy JE. Black box multigrid. J Comput Phys. 1982;48:366–386.

15. McCormick SF. Fast adaptive composite grid (FAC) methods: Theory for the variational case. In: Böhmer K, Stetter HJ, editors. Defect correction

methods: Theory and applications, Computing Suppl. 5. Vienna: Springer-Verlag, 1984; p. 115–121.

16. McCormick S, Thomas J. The fast adaptive composite grid (FAC) method for elliptic equations. Math Comput. 1986;46(174):439–456.

17. Lee B, McCormick SF, Philip B, Quinlan DJ. Asynchronous fast adaptive composite-grid methods: Numerical results. SIAM J Sci Comput.

2003;25(2):682–700.

18. Lee B, McCormick SF, Philip B, Quinlan DJ. Asynchronous fast adaptive composite-grid methods for elliptic problems: Theoretical foundations.

SIAM J Numer Anal. 2004;42(1):130–152.

19. Ruge JW, Stüben K. Algebraic multigrid (AMG). In: McCormick SF, editor. Multigrid Methods, Frontiers in Applied Mathematics, vol. 3.

Philadelphia, PA: SIAM, 1987; p. 73–130.

20. Stüben K. An introduction to algebraic multigrid. In: Trottenberg U, Oosterlee C, Schüller A, editors. Multigrid. London: Academic Press, 2001;

p. 413–528.

21. Swarztrauber PN. The direct solution of the discrete Poisson equation on the surface of a sphere. J Comput Phys. 1974;15:46–54.

22. Floater MS, Hormann K. Surface parameterization: A tutorial and survey. Advances in multiresolution for geometric modelling, Math. Vis.

Berlin: Springer, 2005; p. 157–186. https://doi.org/10.1007/3-540-26808-1-9

23. Ruuth SJ, Merriman B. A simple embedding method for solving partial differential equations on surfaces. J Comput Phys.

2008;227(3):1943–1961. https://doi.org/10.1016/j.jcp.2007.10.009

24. Macdonald CB, Ruuth SJ. The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J Sci

Comput. 2009/10;31(6):4330–4350. https://doi.org/10.1137/080740003

25. Dziuk G, Elliott CM. Finite element methods for surface PDEs. Acta Numer. 2013;22:289–396.

26. Barros SRM. Multigrid methods for two- and three-dimensional Poisson-type equations on the sphere. J Comput Phys. 1991;92(2):313–348.

https://doi.org/10.1016/0021-9991(91)90213-5

27. Chen Y, Macdonald CB. The closest point method and multigrid solvers for elliptic equations on surfaces. SIAM J Sci Comput.

2015;37(1):A134–A155. https://doi.org/10.1137/130929497

28. Bey J. Finite-volumen- und mehrgitterverfahren für elliptische randwertprobleme. PhD Thesis, Eberhard-Karls-Universität, Tübingen, Germany,

1997.

29. Landsberg C, Voigt A. A multigrid finite element method for reaction-diffusion systems on surfaces. Comput Vis Sci. 2010;13(4):177–185.

https://doi.org/10.1007/s00791-010-0136-2

30. Xu J. Iterative methods by space decomposition and subspace correction: A unifying approach. SIAM Rev. 1992;34:581–613.

31. Toselli A, Widlund O. Domain decomposition methods—Algorithms and theory, Springer Series in Computational Mathematics, vol. 34. Berlin:

Springer-Verlag; 2005.

32. Börgers C, Larsen EW. On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport. Med Phys.

1996;23(10):1749–59.

33. Lewis EE, Miller WF. Computational methods of neutron transport. La Grange Park, IL: American Nuclear Society; 1993.

34. Morel JE, Manteuffel TA. An angular multigrid acceleration technique for Sn equations with highly forward peaked scattering. Nucl Sci Eng.

1991;107:330–342.

35. Börgers C, Maclachlan S. An angular multigrid method for monoenergetic particle beams in Flatland. J Comp Phys. 2010;229:2914–2931.

36. Börgers C. Fast iterative method for computing particle beams penetrating matter. J Comput Phys. 1997;133(2):323–339.

37. Lee B. A novel multigrid method for SN discretizations of the mono-energetic Boltzmann transport equation in the optically thick and thin

regimes with anisotropic scattering. I. SIAM J Sci Comput. 2009/10;31(6):4744–4773. https://doi.org/10.1137/080721480

https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/10.1007/BF01389733
https://doi.org/10.1137/0915008
https://doi.org/10.1016/0377-0427(94)90290-9
https://doi.org/10.1016/0377-0427(94)90290-9
https://doi.org/10.1137/S0036144502409093
https://doi.org/10.1137/S0036144502409093
https://doi.org/10.1137/S003614450342061
https://doi.org/10.1137/S003614450342061
https://doi.org/10.1007/3-540-26808-1-9
https://doi.org/10.1016/j.jcp.2007.10.009
https://doi.org/10.1137/080740003
https://doi.org/10.1016/0021-9991(91)90213-5
https://doi.org/10.1137/130929497
https://doi.org/10.1007/s00791-010-0136-2
https://doi.org/10.1137/080721480

16 of 16 ADLER ET AL.

38. Lee B. Improved multiple-coarsening methods for SN discretizations of the Boltzmann equation. SIAM J Sci Comput. 2010;32(5):2497–2522.

https://doi.org/10.1137/080742476

39. Lee B. Space-angle-energy multigrid methods for Sn discretizations of the multi-energetic Boltzmann equation. Numer Linear Algebra Appl.

2012;19(4):773–795. https://doi.org/10.1002/nla.808

40. Lee B. A multigrid framework for Sn discretizations of the Boltzmann transport equation. SIAM J Sci Comput. 2012;34(4):A2018–A2047. https://

doi.org/10.1137/110841199

41. Gao H, Zhao H. A fast-forward solver of radiative transfer equation. Transp Theory Statist Phys. 2009;38(3):149–192. https://doi.org/10.1080/

00411450903187722

42. Gao H, Zhao H. Analysis of a numerical solver for radiative transport equation. Math Comp. 2013;82(281):153–172. https://doi.org/10.1090/

S0025-5718-2012-02605-6

43. Lau CY, Adams ML. Discrete-ordinates quadrature based on linear and quadratic discontinuous finite elements over spherical quadrilaterals.

Paper presented at: Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA)

and the Monte Carlo (MC) method; 2015; Nashville, Tennessee; p. 19–23.

44. Demlow A, Dziuk G. An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces. SIAM J Numer Anal.

2007;45(1):421–442.

45. Camacho F, Demlow A. L2 and pointwise a posteriori error estimates for FEM for elliptic PDEs on surfaces. IMA J Numer Anal.

2015;35(3):1199–1227.

46. Dziuk G. Finite elements for the Beltrami operator on arbitrary surfaces. Partial differential equations and calculus of variations, Lecture Notes

in Math, vol. 1357. Berlin: Springer, 1988; p. 142–155. https://doi.org/10.1007/BFb0082865

47. McCormick S, Quinlan D. Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors: Performance

results. Parallel Comput. 1989;12(2):145–156.

48. MFEM. Modular finite element methods library. 2016. Available from: http://mfem.org

49. Henson V, Yang U. BoomerAMG: A parallel algebraic multigrid solver and preconditioner. Appl Numer Math. 2002;41:155–177.

50. hypre. High performance preconditioners. 2016. Available from: http://www.llnl.gov/CASC/hypre/

51. De Sterck H, Yang UM, Heys JJ. Reducing complexity in parallel algebraic multigrid preconditioners. SIAM J Matrix Anal Appl.

2006;27(4):1019–1039.

How to cite this article: Adler JH, Lashuk I, MacLachlan SP. Composite-grid multigrid for diffusion on the sphere.

Numer Linear Algebra Appl. 2017;e2115. https://doi.org/10.1002/nla.2115

https://doi.org/10.1137/080742476
https://doi.org/10.1002/nla.808
https://doi.org/10.1137/110841199
https://doi.org/10.1137/110841199
https://doi.org/10.1080/00411450903187722
https://doi.org/10.1080/00411450903187722
https://doi.org/10.1090/S0025-5718-2012-02605-6
https://doi.org/10.1090/S0025-5718-2012-02605-6
https://doi.org/10.1007/BFb0082865
http://mfem.org
http://www.llnl.gov/CASC/hypre/
https://doi.org/10.1002/nla.2115

	Composite-grid multigrid for diffusion on the sphere
	Abstract
	Introduction
	Motivating Application: Radiation Dose Planning
	Structured Refinement of The Sphere
	Composite-Grid Finite-Element Discretization
	FAC Method
	Numerical Experiments
	Smooth source term
	Impulse source term
	Two-spot problem

	Conclusions and Future Work
	References

