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ROBUST SOLVERS FOR MAXWELL’S EQUATIONS
WITH DISSIPATIVE BOUNDARY CONDITIONS∗

J. H. ADLER† , X. HU† , AND L. T. ZIKATANOV‡

Abstract. In this paper, we design robust and efficient linear solvers for the numerical approx-
imation of solutions to Maxwell’s equations with dissipative boundary conditions. We consider a
structure-preserving finite-element approximation with standard Nédélec–Raviart–Thomas elements
in space and a Crank–Nicolson scheme in time to approximate the electric and magnetic fields. We
focus on two types of block preconditioners. The first type is based on the well-posedness results of
the discrete problem. The second uses an exact block factorization of the linear system, for which
the structure-preserving discretization yields sparse Schur complements. We prove robustness and
optimality of these block preconditioners and provide supporting numerical tests.
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1. Introduction. In this paper, we consider Maxwell’s system of partial differen-
tial equations (PDEs) with dissipative boundary conditions, also known as impedance
boundary conditions. Let O be a bounded, connected domain, O ⊂ R3, and consider
Maxwell’s equations in the exterior of O, that is, in R3 \ O:

Bt + curlE = 0,(1)
εEt − curlµ−1B = −j,(2)

div εE = 0,(3)
divB = 0.(4)

Here, ε is the permittivity of the medium, µ is the permeability, and j is the known
current density of the system satisfying div j = 0. We assume that the computational
domain, Ω = S \ O, is bounded, where S is a ball in R3 with sufficiently large radius
that contains O. The system (1)–(4) is subject to a dissipative boundary condition:

(5) (1 + γ)Etan = − n× µ−1B on Γi.

In this setting, Γi = ∂Ω∩∂O and Ftan = F −〈F ,n〉n, for a vector-valued function F .
On the rest of the boundary, Γo = ∂Ω\Γi, we have essential (Dirichlet-type) boundary
conditions. For symmetric hyperbolic systems, such problems have been investigated
for several decades starting with the work of Majda [19, 20] and later in the works
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by Colombini, Petkov, and Rauch on Maxwell’s equations [4, 5, 23]. We note that
the boundary conditions considered in the model problem pertain to obstacles more
general than a perfect conductor. Of course, all of the constructions in this paper
also apply to a perfectly conducting obstacle (i.e., for the case of essential boundary
conditions on the entire boundary).

In the following, we develop efficient solvers based on block factorizations of
structure-preserving discretizations of Maxwell’s equations, (1)–(4), with dissipative
boundary conditions, (5). The goal is to efficiently solve the full time-dependent prob-
lem, uniformly with respect to physical and discretization parameters. The finite-
element discretization that we use is described in [1] with further details included
below. A serious bottleneck in the simulations based on this discretization, however,
was the computational work needed for the solution of the resulting linear systems
at each time step. As shown later, both theoretically and via numerical experiments,
this issue is resolved by efficient and robust preconditioning techniques proposed
here.

Block preconditioners are often used for coupled systems, especially those of
saddle-point type (see, e.g., [2, 3, 8, 16, 17, 21, 25, 27, 28]). Such preconditioners
usually decouple the problems at the preconditioning stage and convert complicated
systems into several simpler problems for which efficient solvers are either known or
easier to construct. In general, there are two approaches to construct these types of
preconditioners: analytic and algebraic. The analytic approach constructs the pre-
conditioners by studying the mapping properties of the differential operators between
appropriate Sobolev spaces. Prominent examples in this direction are the works of
Mardal and Winther [22, 21], who developed a class of robust preconditioners for
parameter-dependent problems, such as convection-dominated systems and the time-
dependent Stokes equations. On the other hand, the algebraic approach aims at
constructing preconditioners based on a block decomposition (or factorization) of the
discretized equations. These factorizations can be very general, but they inevitably in-
volve systems with Schur complements, which in turn require special approximations.
Examples of applications include the Navier–Stokes equations and magnetohydrody-
namics (MHD), where such approximate block factorization preconditioners have been
developed [6, 7, 24].

In this paper, we present two types of block preconditioners based on these two
approaches. For the analytical approach, we prove the well-posedness of the discrete
problem in appropriate Sobolev spaces equipped with weighted norms. This allows us
to achieve robustness of the linear solvers with respect to the physical and discretiza-
tion parameters of the system. We then apply the framework from [17] and [22] and
construct a family of block diagonal preconditioners, which are isomorphisms between
the same pair of Sobolev spaces. The action of any such preconditioner corresponds
to a decoupled problem and is computed efficiently.

For the algebraic approach, we derive an exact block factorization of the resulting
linear systems. In general, this may lead to an inefficient method, because it requires
computing the action of the inverses of approximations to the corresponding Schur
complements. Typically, the Schur complements are full matrices of size comparable
to the size of the original problem. In the case of the discretized Maxwell’s equations,
however, we deal with special linear systems resulting from finite-element spaces that
are part of a deRham complex. As a result, we are able to prove that the Schur
complements, themselves, are sparse. Thus, the action of the inverse to these Schur
complements can be done using algebraic preconditioners, and this action is carried
out with an optimal computational cost.
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The analytical approach we take is similar to what is done in [18], where an MHD
system is considered. Here, we adjust the analysis to take into account the dissipative
boundary condition. The algebraic approach, however, is new. Although the block
factorization technique can be applied to the MHD system, it cannot be done in an
exact fashion and the resulting Schur complements are not sparse. For the Maxwell
system we consider here, the block factorization is exact and the Schur complements
are sparse. This is the key to having robust preconditioners, and we confirm the
results with numerical experiments (see section 5).

The paper is organized as follows. In section 2 we introduce notation and defini-
tions for Maxwell’s equations. The structure-preserving discretization is then reviewed
in section 3, and in section 4 we introduce and analyze the analytic and algebraic block
preconditioners. Finally, in section 5, we present numerical experiments illustrating
the effectiveness and robustness of the proposed preconditioners. Concluding remarks
and a discussion of future work are given in section 6.

2. Preliminaries. We use (·, ·) and ‖ · ‖ to denote the standard L2(Ω) inner
product and norm on a domain, Ω,

〈u, v〉 =
∫

Ω
u · v dx and ‖u‖ =

√
〈u, u〉.

With a slight abuse of notation, we use L2(Ω) to denote both the scalar and vector L2

space. Additionally, we assume that both ε and µ are positive continuous functions
only depending on x ∈ Ω, inducing weighted L2 norms,

‖u‖2ε = 〈εu,u〉 and ‖u‖2µ−1 = 〈µ−1u,u〉.

Next, given a Lipschitz domain, Ω, and a differential operator, D, we use a stan-
dard notation for the spaces

H(D) = {v ∈ L2(Ω),Dv ∈ L2(Ω)}

with the associated graph norm, ‖u‖2D = ‖u‖2 + ‖Du‖2 (e.g., H(grad) = H1(Ω)).
Then, we introduce the following spaces (the first one for scalar functions and the rest
for vector-valued functions):

H0(grad) = H1
0 (Ω) = {v ∈ H1(Ω) such that v

∣∣
∂Ω = 0},

Himp(curl) = {v ∈ H(curl) such that v × n
∣∣
Γo

= 0},

Himp(div) = {v ∈ H(div) such that 〈v,n〉
∣∣
Γo

= 0},

H0
imp(div) = {v ∈ Himp(div) such that div v = 0}.

More details on the construction of these spaces is found in [1]. Finally, for the
time-dependent problem considered here, the relevant function spaces are

H0(grad; t) = {v(t, ·) ∈ H1
0 (Ω) ∀t ≥ 0},

Himp(curl; t) = {v(t, ·) ∈ Himp(curl) ∀t ≥ 0},
Himp(div; t) = {v(t, ·) ∈ Himp(div) ∀t ≥ 0}.

Here, we have indexed the spaces with imp just to indicate that we have a part
of the boundary where we impose an impedance (i.e., dissipative) boundary condi-
tion. With this notation, following [1], we introduce an auxiliary variable, p, as-
sociated with the divergence-free constraint of E and get the following variational
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problem: Find (B,E, p) ∈ Himp(div; t)×Himp(curl; t)×H0(grad; t) such that for all
(C,F , q) ∈ Himp(div)×Himp(curl)×H1

0 (Ω) and for all t > 0,

〈µ−1Bt,C〉+ 〈µ−1curlE,C〉 = 0,(6)
〈εEt,F 〉+ 〈ε grad p,F 〉 − 〈µ−1B, curlF 〉

+ (1 + γ)
∫

Γi

〈Etan,Ftan〉 = −(j,F ),(7)

〈pt, q〉 − 〈εE, grad q〉 = 0.(8)

At t = 0, the following initial conditions are needed:

(9) E(0,x) = E0(x), B(0,x) = B0(x), p(0,x) = 0.

In [1], it was shown that the above variational problem preserves the divergence of
the magnetic field, B, strongly and the divergence of the electric field, E, weakly if
the initial conditions and right-hand side satisfy certain conditions. We discuss this
further in the following section.

3. Finite-element discretization. Going forward, we consider a structure-
preserving discretization of (6)–(8) and discuss the well-posedness of the linear sys-
tem obtained at each time step. Such analysis is crucial for developing the block
preconditioners discussed in section 4.

For the temporal discretization, we adopt a Crank–Nicolson scheme. Crank–
Nicholson is an example of a second-order symplectic time-stepping method, which
is capable of preserving the discrete energy of the system. These types of schemes
are important for guaranteeing that the asymptotic behavior is captured. If needed,
higher-order symplectic methods can be used [9, 10, 11, 12].

Spatially, we consider standard finite-element spaces. For the magnetic field B,
we use the Raviart–Thomas element denoted by Hh,imp(div) ⊂ Himp(div). For the
electric field E, we use the Nédélec element denoted by Hh,imp(curl) ⊂ Himp(curl).
Finally, we use standard Lagrange finite elements for the auxiliary unknown, p, and
denote the space by Hh,0(grad) ⊂ H0(grad). These choices of finite-element spaces
satisfy the following exact sequence, which results in a structure-preserving discretiza-
tion:

(10) Hh,0(grad)
grad−−−−→ Hh,imp(curl) curl−−−−→ Hh,imp(div) div−−−−→ L2

h,

where L2
h is the corresponding piecewise polynomial subspace of L2(Ω).

Thus, the full discretization of Maxwell’s equation is as follows: Find (Bh,Eh, ph)
∈ Hh,imp(div)×Hh,imp(curl)×Hh,0(grad) such that for all (Ch,Fh, qh) ∈ Hh,imp(div)×
Hh,imp(curl)×Hh,0(grad),〈

µ−1B
n
h −B

n−1
h

τ

〉
Ch +

〈
µ−1curl

En
h +En−1

h

2

〉
Ch = 0,(11) 〈

ε
En
h −E

n−1
h

τ

〉
Fh+

〈
ε

grad pnh + grad pn−1
h

2

〉
Fh−

〈
µ−1B

n
h +Bn−1

h

2

〉
curlFh

+ (1 + γ)
∫

Γi

〈
En
h,tan +En−1

h,tan

2

〉
Fh,tan = −

(
jn + jn−1

2
,Fh

)
,(12) 〈

pnh − p
n−1
h

τ

〉
qh −

〈
ε
En
h +En−1

h

2

〉
grad qh = 0,(13)
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with suitable initial conditions,

(14) B0
h = Πdiv

h B0, E0
h = Πcurl

h E0, p0
h = 0.

Here, the superscripts indicate the time step and Πdiv
h and Πcurl

h are the canonical inter-
polations forHh,imp(div) and Hh,imp(curl). This discretization is structure-preserving,
since it preserves the divergence of B strongly and the divergence of E weakly at the
discrete level (as long as the initial conditions and right-hand side are discretized
properly). We refer to [1] for details.

3.1. Well-posedness. For simplicity, we drop the subscript h and superscript n
and move all terms involving the previous time step to the right-hand side. Thus, the
full discretization is stated as follows: Find (B,E, p) ∈ Hh,imp(div)×Hh,imp(curl)×
Hh,0(grad) such that for all (C,F , q) ∈ Hh,imp(div)×Hh,imp(curl)×Hh,0(grad),

2
τ
〈µ−1B,C〉+ 〈µ−1curlE,C〉 = (gB,C),(15)

2
τ
〈εE,F 〉+ 〈ε grad p,F 〉 − 〈µ−1B, curlF 〉

+ (1 + γ)
∫

Γi

〈Etan,Ftan〉 = (gE ,F ),(16)

2
τ
〈p, q〉 − 〈εE, grad q〉 = (gp, q),(17)

where the dual functionals on the right-hand side are defined as

(gB,C) =
2
τ
〈µ−1Bn−1

h ,C〉 − 〈µ−1curl En−1
h ,C〉,

(gE ,F ) =
2
τ
〈εEn−1

h ,F 〉 − 〈ε grad pn−1
h ,F 〉+ 〈µ−1Bn−1

h , curlF 〉

− (1 + γ)
∫

Γi

〈En−1
h,tan,Ftan〉 − 〈jn + jn−1,F 〉,

(gp, q) =
2
τ
〈pn−1
h , q〉+ 〈εEn−1

h , grad q〉.

Following the ideas in [14] and [18], in order to analyze the well-posedness of (15)–
(17), we analyze the following auxiliary problem first: Find (B,E, p) ∈ Hh,imp(div)×
Hh,imp(curl) ×Hh,0(grad) such that for all (C,F , q) ∈ Hh,imp(div) ×Hh,imp(curl) ×
Hh,0(grad),

2
τ
〈µ−1B,C〉+ 〈µ−1curlE,C〉+ 〈div B,div C〉 = (gB,C),(18)

2
τ
〈εE,F 〉+ 〈ε grad p,F 〉 − 〈µ−1B, curlF 〉

+ (1 + γ)
∫

Γi

〈Etan,Ftan〉 = (gE ,F ),(19)

2
τ
〈p, q〉 − 〈εE, grad q〉 = (gp, q).(20)

Since divB = 0, the mixed formulations (15)–(17) and (18)–(20) are equivalent if
gB ∈ (H0

h,imp(div))′. Thus, the well-posedness of (15)–(17) follows directly from the
well-posedness of (18)–(20).
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Introducing the bilinear form

a(B,E, p;C,F , q) :=
2
τ
〈µ−1B,C〉+ 〈µ−1curlE,C〉+ 〈divB,divC〉

+
2
τ
〈εE,F 〉+ 〈ε grad p,F 〉 − 〈µ−1B, curlF 〉+ (1 + γ)〈E,F 〉Γi(21)

+
2
τ
〈p, q〉 − 〈εE, grad q〉

and the weighted norms

‖B‖2div :=
2
τ
‖B‖2µ−1 + ‖divB‖2,(22)

‖E‖2curl :=
2
τ
‖E‖2ε +

τ

2
‖curlE‖2µ−1 + (1 + γ)‖E‖2Γi

,(23)

‖p‖2grad :=
2
τ
‖p‖2 +

τ

2
‖grad p‖2ε,(24)

we have the following theorem, which shows that (18)–(20) is well-posed.

Theorem 1. Let Vh := Hh,imp(div) × Hh,imp(curl) × Hh,0(grad). The bilinear
form defined by (21) satisfies the inf-sup condition,

sup
0 6=(C,F ,q)∈Vh

a(B,E, p;C,F , q)(
‖C‖2div + ‖F ‖2curl + ‖q‖2grad

)1/2 ≥
1
4
(
‖B‖2div + ‖E‖2curl + ‖p‖2grad

)1/2
,

(25)

and is bounded,

a(B,E, p;C,F , q)(26)

≤ C
(
‖B‖2div + ‖E‖2curl + ‖p‖2grad

)1/2 (‖C‖2div + ‖F ‖2curl + ‖q‖2grad
)1/2

.

Thus, the auxiliary problem, (18)–(20), is well-posed.

Proof. Choose C = B + τ
2 curlE, F = E + τ

2 grad p, and q = p. Then,

a(B,E, p;C,F , q) =
2
τ

〈
µ−1B,B +

τ

2
curlE

〉
+
〈
µ−1curlE,B +

τ

2
curlE

〉
+〈divB,divB〉+ 2

τ

〈
εE,E+

τ

2
grad p

〉
+
〈
ε grad p,E+

τ

2
grad p

〉
− 〈µ−1B, curlE〉+ (1 + γ)〈E,E〉Γi

+
2
τ
〈p, p〉 − 〈εE, grad p〉,

where we use the facts that div curlE = 0, curl grad p = 0, and
∫

Γi
〈Etan, grad p〉 = 0.

Then, after some rearranging,

a(B,E, p;C,F , q) =
2
τ
‖B‖2µ−1 + 〈µ−1B, curlE〉+ ‖divB‖2

+
2
τ
‖E‖2ε +

τ

2
‖curlE‖2µ−1 + (1 + γ)‖E‖2Γi

+ 〈εE, grad p〉

+
2
τ
‖p‖2 +

τ

2
‖grad p‖2ε
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≥ 2
τ
‖B‖2µ−1 −

1
τ
‖B‖2µ−1 −

τ

4
‖curlE‖2µ−1 + ‖divB‖2

+
2
τ
‖E‖2ε +

τ

2
‖curlE‖2µ−1 + (1 + γ)‖E‖2Γi

− 1
τ
‖E‖2ε

− τ

4
‖grad p‖2ε +

2
τ
‖p‖2 +

τ

2
‖grad p‖2ε

=
1
τ
‖B‖2µ−1 + ‖divB‖2 +

1
τ
‖E‖2ε +

τ

4
‖curlE‖2µ−1 + (1 + γ)‖E‖2Γi

+
2
τ
‖p‖2 +

τ

4
‖grad p‖2ε

≥ 1
2
(
‖B‖2div + ‖E‖2curl + ‖p‖2grad

)
.

On the other hand,

‖C‖2div + ‖F ‖2curl + ‖q‖2grad

= ‖B +
τ

2
curlE‖2div + ‖E +

τ

2
grad p‖2curl + ‖p‖2grad

≤ 2‖B‖2div +
τ2

2
‖curlE‖2div + 2‖E‖2curl +

τ2

2
‖grad p‖2curl + ‖p‖2grad

= 2‖B‖2div + τ‖curlE‖2µ−1 + 2‖E‖2curl + τ‖grad p‖2ε + ‖p‖2grad

≤ 4
(
‖B‖2div + ‖E‖2curl + ‖p‖2grad

)
.

Then, the inf-sup condition, (25), follows directly. Boundedness, (26), is derived
from the definition of the bilinear form, a(·, ·, ·; ·, ·, ·), and some Cauchy–Schwarz in-
equalities. Finally, the well-posedness of the auxiliary problem, (18)–(20), follows by
applying the Babuska–Brezzi theory.

Theorem 2. If gB ∈ (H0
h,imp(div))′, the mixed formulation, (15)–(17), is well-

posed.

Proof. Since (15)–(17) and (18)–(20) are equivalent, and the latter is well-posed,
then so is the original mixed formulation, (15)–(17). Similar arguments as in Lemma
1 and Theorem 8 of [14] give the result.

4. Robust linear solvers. Next, we develop the robust linear solvers for solving
(15)–(17). We consider two types of preconditioners. One is based on the well-
posedness described above, and the other is based on block factorization.

4.1. Block preconditioners based on well-posedness. The first type of pre-
conditioner we consider follows from the framework proposed in [17] and [22]. Such
preconditioners are constructed based on the well-posdeness of the linear system.
Roughly speaking, the well-posedness shows that the linear operator under consid-
eration is an isomorphism from the given Hilbert space to its dual. Therefore, any
isomorphism from the dual space back to the original Hilbert space can be used as
a preconditioner. A natural choice for such an isomorphism is the Riesz operator
induced by the norm equipped by the Hilbert space.

4.1.1. Preconditioner for the auxiliary problem. First consider the aux-
iliary problem used in the proof of well-posedness. The matrix form of (18)–(20)
is

(27) Aauxx = b⇐⇒

 2
τMB +DTM0D MBK
−KTMB

2
τME + Z MEG
−GTME

2
τMp

BE
p

 =

gB

gE

gp

 ,
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where Mp, ME , MB, and M0 are the (weighted) mass matrices for finite-element
spaces Hh,0(grad), Hh,imp(curl), Hh,imp(div), and L2

h, respectively, and Z represents
the surface integral associated with the impedance boundary condition. Additionally,
G, K, and D are incidence matrices representing the discrete gradient, curl, and
divergence operators on the given triangulation. Let {φgrad

i }, {φcurl
i }, and {φdiv

i } be
the basis of Hh,0(grad), Hh,imp(curl), and Hh,imp(div), respectively. Moreover, let
{ηcurl

i }, {ηdiv
i }, and {ηL2

i } be the corresponding degrees of freedom. Then, G, K, and
D are defined as follows:

Gij := ηcurl
i (grad φgrad

j ),

Kij := ηdiv
i (curl φcurl

j ),

Dij := ηL
2

i (div φdiv
j ).

Based on this definition, we naturally have

(28) KG = 0 and DK = 0,

which are the discrete counterparts of curl grad = 0 and div curl = 0. Another crucial
property on the discrete level is GTZ = 0. This follows from the fact that

〈ZE, grad p〉= (1 + γ)
∫

Γi

〈n×E,n× grad p〉= 0 ∀E ∈Hh,imp(curl), p∈Hh,0(grad).

Equivalently, ZG = 0. Note that these properties hold for any order of finite-element
spaces. For example, note that from (10), we have grad φ ∈ Hh,imp(curl) for any
φ ∈ Hh,0(grad), and moreover,

(29) grad φ =
∑
l

ηcurl
l (grad φ)φcurl

j .

Thus, for (KG)ij , we then obtain

(KG)ij =
∑
l

KilGlj =
∑
l

ηdiv
i (curl φcurl

l )ηcurl
l (grad φgrad

j )

= ηdiv
i

(
curl

∑
l

ηcurl
l (grad φgrad

j )φcurl
l

)
= ηdiv

i (curl grad φgrad
j ) = 0 (by (29)).

Results for DK = 0 are similar.
Based on this framework, we first consider the following block diagonal precondi-

tioner, which corresponds to the Reisz operator induced by the weighted norm ‖·‖div,
‖ · ‖curl, and ‖ · ‖grad:

W̃aux
D =

DTM0D + 2
τMB 0 0

0 τ
2K

TMBK + 2
τME + Z 0

0 0 τ
2G

TMpG+ 2
τMp

−1

.

Following [17, 22], and with a slight abuse of notation between matrices and
operators, we note that Aaux : X 7→ X ′ and W̃aux

D : X ′ 7→ X, where X :=
Hh,imp(div)×Hh,imp(curl)×Hh,0(grad) equipped with the norm ‖x‖X := (‖B‖2div +
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‖E‖2curl +‖p‖2grad)1/2. Therefore, W̃aux
D Aaux : X 7→ X. Based on well-posedness of

the auxiliary problem (Theorem 1), we have, for x = (B,E, p)T and y = (C,F , q)T ,

‖W̃aux
D A

aux‖X 7→X := sup
x supy∈X

|(W̃aux
D Aauxx,y)X |
‖x‖X‖y‖X

= sup
x∈X

|a(x;y)|
‖x‖X‖y‖X

≤ C

and

‖(W̃aux
D A

aux)−1‖−1
X 7→X = inf

x∈X

‖W̃aux
D Aauxx‖X
‖x‖X

= inf
x∈X

sup
y∈X

(W̃aux
D Aauxx,y)X

‖x‖X‖y‖X

= inf
x∈X

sup
y∈X

a(x;y)
‖x‖X‖y‖X

≥ 1
4
.

We can then estimate the condition number of the preconditioned system as follows:

κ(W̃aux
D A

aux) := ‖W̃aux
D A

aux‖X 7→X · ‖(W̃aux
D A

aux)−1‖X 7→X ≤ 4C = O(1).

In practice, the action of W̃aux
D involves the inversion of three diagonal blocks,

which could be expensive. In order to reduce the cost, we replace the diagonal blocks of
W̃aux
D by their spectral equivalent symmetric positive definite (SPD) approximations:

Waux
D = diag (QB, QE , Qp) .

We use HX-preconditioners [13] to solve the first two diagonal blocks of W̃aux
D , defining

QB and QE , and use standard multigrid preconditioners to solve the third diagonal
block, defining Qp. Similarly, we can show that the condition number κ(Waux

D Aaux) =
O(1).

4.1.2. Preconditioner for the original formulation. Next, we consider the
original structure-preserving discretization, (15)–(17). In matrix form, we write

(30) Ax = b⇐⇒

 2
τMB MBK
−KTMB

2
τME + Z MEG
−GTME

2
τMp

BE
p

 =

gB

gE

gp

 ,

which is obtained by removing the stabilization term, DTM0D, in Aaux. Removing
the stabilization term in the preconditioner W̃auxD, then, we obtain a diagonal block
preconditioner for A:

(31) W̃D =

 2
τMB 0 0

0 τ
2K

TMBK + 2
τME + Z 0

0 0 τ
2G

TMpG+ 2
τMp

−1

.

Using the fact that DK = 0, we have(
DTMD +

2
τ
MB

)−1

MBK =
τ

2
K =

(
2
τ
MB

)−1

MBK.

Therefore, W̃auxDAaux = W̃DA, which implies that κ(W̃DA) = O(1) and W̃D is
a robust preconditioner for A. Obviously, the action of W̃D can be expensive in
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practice, so we replace the diagonal blocks of W̃D by their spectral equivalent SPD
approximations:

(32) WD = diag (QB, QE , Qp) .

It is easy to see that κ(WDA) = κ(W̃aux
D Aaux) = O(1) and WD is a robust precondi-

tioner for A.

4.1.3. Keeping the magnetic field solenoidal. In [1], we show that an im-
portant feature of the structure-preserving discretization, (15)–(17), is that it keeps
divB = 0 at every time step. Here, we follow the approach proposed in [18] to show
that it is possible to preserve the divergence-free condition for each iteration of the
linear solver.

Theorem 3. Assume the initial guess, x0 = (B0,E0, p0)T , and right-hand side,
b = (gB, gE , gp)T , satisfy divB0 = 0 and divM−1

B gB = 0, respectively. Then,
all iterations, xl = (Bl,El, pl)T , of the W̃D preconditioned GMRES method satisfy
divBl = 0.

Proof. According to the definition of preconditioned GMRES, we have

xl ∈ x0 +Kl(W̃DA, r0),

where

Kl(W̃DA, r0) = span{r0, W̃DAr0,
(
W̃DA

)2
r0, . . . ,

(
W̃DA

)l−1
r0},

and r0 = (r0
B, r

0
E , r

0
p)T := W̃D(b−Ax0). Note that div r0

B = 0.
Denote vm = (vmB ,v

m
E ,v

m
p )T := (W̃DA)mr0, m = 0, 1, 2, . . . , l − 1. Since vm =

W̃DAvm−1, we obtain

(33) vmB =
(τ

2
MB

)−1 (τ
2
MBv

m−1
B +MBKv

m−1
E

)
= vm−1

B +
2
τ
Kvm−1

E .

Then, div vmB = 0 if div vm−1
B = 0. Since div r0

B = 0, by induction, we have div vmB =
0.

Finally, xl is a linear combination of vm, m = 0, 1, 2 . . . , l− 1, which implies that
Bl is a linear combination of vmB . Since div vmB = 0, we conclude that divBl = 0 for
all l.

The above theory says that using W̃D as a preconditioner preserves the divergence-
free condition of B. However, the preconditionerWD, in general, may not. A remedy
is to use QB =

(
τ
2MB

)−1, which leads to

(34) WD = diag
((τ

2
MB

)−1
, QE , Qp

)
.

While it may seem impractical to use such a preconditioner because of the need of
the exact action of the inverse of a matrix, using (33), we can update vmB without
this inversion. Thus, using WD as the preconditioner still allows for the preservation
of the divergence-free condition for all the iterations of GMRES.

Theorem 4. Assume the initial guess, x0 = (B0,E0, p0)T , and right-hand side,
b = (gB, gE , gp)T , satisfy divB0 = 0 and divM−1

B gB = 0, respectively. Then,
all iterations, xl = (Bl,El, pl)T , of the WD preconditioned GMRES method satisfy
divBl = 0.
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Proof. The proof is the same as for Theorem 3 with W̃D replaced by WD.

4.1.4. Generalization. We conclude this subsection with the generalization of
the block diagonal preconditioner to a block triangular preconditioner,

(35) WL =

( τ2MB

)−1 0 0
−KTMB Q−1

E 0
0 −GTME Q−1

p

−1

and

(36) WU =

( τ2MB

)−1
MBK 0

0 Q−1
E MEG

0 0 Q−1
p

−1

.

Since the analysis for WU is the same, we only consider WL here. Also, note that we
use τ

2MB for the first diagonal block in order to keep the divergence-free condition.
With a slight abuse of notation, we define AB, AE , and Ap as follows:

〈ABB,C〉 = 〈B,C〉div ∀C ∈ Hh,imp(div),
〈AEE,F 〉 = 〈E,F 〉curl ∀F ∈ Hh,imp(curl),
〈App, q〉 = 〈p, q〉grad ∀q ∈ Hh,0(grad).

Note that QE and Qp are spectrally equivalent to the inverse of AE and Ap:

c1,E〈QE E,E〉 ≤ 〈A−1
E E,E〉 ≤ c2,E〈QE E,E〉,(37)

c1,p〈Qp p, p〉 ≤ 〈A−1
p p, p〉 ≤ c2,p〈Qp p, p〉.(38)

Since the preconditioners are neither block diagonal nor SPD, we have to use
GMRES to solve them. Following the standard convergence analysis of GMRES, we
derive the following theorem concerning the so-called field-of-values of WLA, defined
as

VW(WLA) :=
{
z ∈ C : z =

〈WLAx,x〉W−1

〈x,x〉W−1
,0 6= x ∈X

}
.

Here, we use the norm ‖ · ‖W−1 induced by W = diag
(
A−1

B , QE , Qp
)
. Based on this

definition, we follow the argument in [17] for the analysis of the GMRES method and
thus derive the following the theorem.

Theorem 5. Assume (37) and (38) hold; then there exists constants, λ and Λ,
such that for any x 6= 0,

λ ≤ 〈WLAx,x〉W
−1

〈x,x〉W−1
,
‖W−1
L Ax‖W−1

‖x‖W−1
≤ Λ,

provided ρ := ‖IE−QEAE‖curl <
√

3−1. Here, the constants λ and Λ do not depend
on either the discretization parameters, h and τ , or the physical parameters, ε and
µ−1.

Proof. By the definition of W−1
L and A, we have
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〈WLAx,x〉W−1 = 〈B,B〉div +
〈τ

2
curl E,B

〉
div

+ 〈E,E〉curl + 〈E, grad p〉

+ 〈QEAEE, grad p〉 − 〈E, grad p〉+ 〈Qpgrad p, grad p〉+
〈τ

2
p, p
〉

≥ ‖B‖2div − ‖B‖div

√
τ

2
‖curl E‖µ−1 + ‖E‖2curl

− (1 + ρ)‖E‖curl‖grad p‖QE
+ ‖grad p‖2QE

+
τ

2
‖p‖2

≥ ‖B‖2div − ‖B‖div‖E‖curl + ‖E‖2curl

− (1 + ρ)‖E‖curl‖grad p‖QE
+ ‖grad p‖2QE

+
τ

2
‖p‖2

≥


‖B‖div
‖E‖curl
‖grad p‖QE√

τ
2‖p‖


T 

1 − 1
2 0 0

− 1
2 1 − 1+ρ

2 0
0 − 1+ρ

2 1 0
0 0 0 1



‖B‖div
‖E‖curl
‖grad p‖QE√

τ
2‖p‖

 .

It is easy to verify that the matrix in the middle is SPD, when 0 ≤ ρ <
√

3 − 1.
Therefore, there exists a constant λ0 such that

〈WLAx,x〉W−1 ≥ λ0

(
‖B‖2div + ‖E‖2curl + ‖grad p‖2QE

+
τ

2
‖p‖2

)
≥ λ0

(
‖B‖2div + ‖E‖2curl + c−1

2,E
2
τ
‖grad p‖2ε +

τ

2
‖p‖2

)
≥ min{1, (1− ρ), c−1

2,Ec
−1
1,p, c

−1
1,p}λ0〈x,x〉W−1 ,

which gives the lower bound λ := min{1, (1− ρ), c−1
2,Ec

−1
1,p, c

−1
1,p}λ0. The upper bound,

Λ, follows directly from the continuity of each term.

The condition ‖IE − QEAE‖AE
<
√

3 − 1 means that we should solve AE by
a Krylov method using QE as the preconditioner to a certain prescribed tolerance
in practice. Regardless, the above theorem implies that WL preconditioned GMRES
converges uniformly with respect to the discretization and physical parameters.

4.2. Block preconditioner based on exact block factorization. Next, we
consider linear solvers based on block factorization. In general, block factorization
inevitably involves systems with Schur complements, often built recursively if the
system involves more than two fields. Since exact Schur complements are typically
dense, traditional preconditioners based on block factorization need approximations,
and the performance of the preconditioner strongly depends on the accuracy of these
approximations. However, good approximations of the Schur complements are, in
general, rather challenging to design in practice. In the case of (15)–(17) , though, the
structure-preserving discretization allows for the Schur complements to be computed
exactly. Specifically, the exactness property of the sequence of discrete spaces yield
sparse Schur complements that are used directly without approximation.

4.2.1. Exact block factorization. First, consider the mixed formulation, (15)–
(17), more precisely, its matrix form, (30). Recall that due to the structure-preserving
discretization, properties of the gradient and curl operators (e.g., curl grad = 0) are
carried over to the discrete level (e.g., KG = 0 or, equivalently, GTKT = 0). Likewise
GTZ = 0 (or, equivalently, ZG = 0). Based on this, we have the following exact block
factorization of (30):

(39) A = LDU ,
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where

L =

 I
− τ2K

T I
− τ2G

T I

 , D =

 2
τMB

SE

Sp

 , U =

I τ
2K
I τ

2G
I

 ,

(40)

with the Schur complements

SE =
τ

2
KTMBK +

2
τ
ME + Z,

Sp =
τ

2
GTMEG+

2
τ
Mp.

Again, we emphasize that, due to the structure-preserving discretization, the Schur
complements are computed exactly and are sparse.

4.2.2. Block preconditioners. Based on the above exact factorization, (39),
we design several block preconditioners. One simple choice is to use the diagonal
block, D−1. Interestingly, such choice actually leads to the preconditioner, W̃D, (31),
derived from the well-posedness. Of course, computing the inverse of D (or the action
of its inverse) involves inverting the Schur complements, S−1

E and S−1
p , exactly, which

is expensive and infeasible in practice. Therefore, we replace the Schur complements
by their spectral equivalent SPD approximations, which in the diagonal case yields
the block preconditioners in (32) (or (34) if we need to preserve the divergence-free
property):

c1,B〈QB B,B〉 ≤

〈(
2
τ
MB

)−1

BB

〉
≤ c2,B〈QB B,B〉,(41)

c1,E〈QE E,E〉 ≤ 〈S−1
E E,E〉 ≤ c2,E〈QE E,E〉,(42)

c1,p〈Qp p, p〉 ≤ 〈S−1
p p, p〉 ≤ c2,p〈Qp p, p〉.(43)

This implies that for Q = diag (QB, QE , Qp), we have

c1〈Qx,x〉 ≤ 〈D−1 x,x〉 ≤ c2〈Qx,x〉

with c1 = min{c1,B, c1,E , c1,p} and c2 = max{c2,B, c2,E , c2,p}. Possible choices of QB,
QE , and Qp were discussed in the previous section. Again, we choose QB = ( 2

τMB)−1

in order to preserve the divergence-free condition in the linear solver.
Based on Q, though, we consider three other different block preconditioners,

(44) XLD := QL−1, XDU := U−1Q, XLDU := U−1QL−1.

Here, L−1 and U−1 can be computed exactly as follows:

L−1 =

 I
τ
2K

T I
τ
2G

T I

 , U−1 =

I − τ2K
I − τ2G

I

 .

Theorem 6. Let XLD, XDU , and XLDU be defined by (44) and assume the
spectral-equivalent properties, (41)–(43), hold; then,

(45) λ(XLDA) ∈ [C1, C2], λ(XDUA) ∈ [C1, C2], and λ(XLDUA) ∈ [C1, C2],
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where C1 = min{c−1
2,B, c

−2
2,E , c

−1
2,p} and C2 = max{c−1

1,B, c
−1
1,E , c

−1
1,p} are constants that do

not depend on either the discretization parameters, h and τ , or the physical parame-
ters, ε and µ−1.

Proof. First consider XLDA,

XLDA = QL−1LDU = QDU =

QB

( 2
τMB

)
QBMBK
QESE QEMBG

QpSp

 .

Since XLDA is block upper triangular, its eigenvalues, λ(XLDA), are determined by
the eigenvalues of its diagonal blocks. Then, using the spectral-equivalent properties,
(41)–(43), we have λ(XLDA) ∈ [C1, C2].

For the eigenvalues of XDUA, we consider the following generalized eigenvalue
problem:

Ax = λX−1
DUx ⇐⇒ LDUx = λQ−1Ux ⇐⇒ QLDy = λy, where y = Ux.

Thus, the eigenvalues of XDUA are also the eigenvalues of QLD,

QLD =

 QB

( 2
τMB

)
−QEK

TMB QESE

−QpGTME QpSp

 .

This is a block lower triangular matrix, and the eigenvalues are again determined
by the eigenvalues of its diagonal blocks. Therefore, using (41)–(43), λ(XDUA) ∈
[C1, C2].

Finally, we consider XLDU using the following generalized eigenvalue problem:

Ax = λX−1
LDUx ⇐⇒ LDUx = λLQ−1Ux ⇐⇒ QDy = λy, where y = Ux.

Then, the eigenvalues of XLDUA are also the eigenvalues of QD. Since QD =
diag(QB

( 2
τMB

)
, QESE , QpSp), we again conclude that λ(XLDUA) ∈ [C1, C2].

As before, using QB may destroy the divergence-free property of our discretiza-
tion. Therefore, we use QB =

(
τ
2MB

)−1 to guarantee that the resulting precondi-
toned GMRES approach preserves the divergence of B at each iteration.

5. Numerical experiments. Several numerical tests are done by solving sys-
tem (1)–(4) using the Crank–Nicolson time discretization and the structure-preserving
space discretization described in section 3. Here, we focus on the robustness and effi-
ciency of the linear solvers proposed in the previous sections.

5.1. Spherical domain. We first use a test problem described in [4], for which
it was shown in [1] that the given discretization accurately resolves the solution which
decays exponentially in time and space. For the computational domain, we take the
area between a polyhedral approximation of the sphere of radius 1 and a polyhedral
approximation of a sphere of radius 4 (see Figure 1). The inner sphere represents the
obstacle, with an impedance boundary, and the outer sphere is considered far enough
away that a Dirichlet (perfect conductor) boundary condition is used. In other words,
we prescribe E×n = 0, B ·n = 0, and p = 0 on the outer sphere. The exact solution
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Fig. 1. Computational domain of the numerical tests.

Table 1
Geometric information for the sphere meshes.

Vertices Edges Faces DoF
Mesh 1 602 3,210 4,812 8,624
Mesh 2 3,681 21,736 34,482 59,899
Mesh 3 27,005 171,748 282,962 481,715
Mesh 4 228,412 1,525,390 2,567,848 4,321,650

(taken from [4, Theorem 3.2]) is given as follows:

E∗ =
er(|x|+t)

|x|2

(
r2 − r

|x|

) 0
z
−y

 ,(46)

B∗ = er(|x|+t)

 1
|x|3

(
r2 − 3r

|x|
+

3
|x|2

) z2 + y2

−xy
−xz

+

 2r
|x| −

2
|x|2

0
0

 ,(47)

p∗ = 0,(48)

where r = 1/2(1 −
√

1 + 4/γ) for various values of γ. For the initial conditions, we
use piecewise polynomial interpolants of the exponentially decaying solutions given
in (46)–(47) at t = 0. Further corrections of E0 are needed to make it orthogonal
to the gradients of functions in H0,h(grad) and also to the gradients of the discrete
harmonic form. We refer to [1] for details. Finally, for the tests below, we take
γ = 0.05 (r = −4). Four different meshes are used in order to test the robustness
of the preconditioners with respect to the mesh size, and the detailed information
about the meshes can be find in Table 1. Numerical experiments are done using a
workstation with an 8-core 3-GHz Intel Xeon Sandy Bridge CPU and 256 GB of RAM.
The software used is a finite-element and multigrid package written by the authors.

First, we consider the block preconditioners based on well-posedness: the block di-
agonal preconditioner, WD (34); the block lower triangular preconditioner, WL (35);
and the block upper triangular preconditioner, WU (36). The diagonal blocks are
solved inexactly by the preconditioned GMRES method [26] with a tolerance of 10−2,
in order to make sure that the spectral-equivalent properties, (37) and (38), are satis-
fied. This tolerance is sufficient to meet the conditions in the proof of Theorem 5. In
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Table 2
Sphere meshes. Iteration counts for the block preconditioners based on well-posedness: (left)

block diagonal, WD (34); (center) block lower triangular, WL (35); (right) block upper triangular,
WU (36); Diagonal blocks are solved inexactly.

WD
PPPPPPτ

Mesh 1 2 3 4

0.2 21 26 27 28
0.1 14 20 25 27
0.05 10 14 25 24
0.025 7 9 14 20

WL
1 2 3 4

7 8 8 9
6 7 7 8
5 5 6 7
4 5 5 6

WU
1 2 3 4

7 8 8 9
6 7 8 8
5 6 6 8
5 5 6 6

Table 3
Sphere meshes. Iteration counts for the block preconditioners based on block factorization:

(left) block lower triangular, XLD; (center) block upper triangular, XDU ; (right) symmetric, XLDU .
Diagonal blocks are solved inexactly.

XLD
PPPPPPτ

Mesh 1 2 3 4

0.2 5 6 6 6
0.1 5 5 6 5
0.05 5 5 5 6
0.025 4 5 5 5

XDU
1 2 3 4

6 6 6 7
5 5 6 7
5 5 6 6
5 5 5 6

XLDU
1 2 3 4

4 4 4 5
4 4 4 4
4 4 4 4
4 4 4 4

all experiments, these diagonal blocks are usually solved in no more than 10 iterations
(often under 5).

Since we use a Krylov solver on the diagonal blocks, which is a nonlinear iteration,
the preconditioners are actually changing at each step. Thus, we use flexible GMRES
(FGMRES) as the outer iteration with a relative residual stopping criteria of 10−8.
Table 2 shows the number of iterations of the preconditioned FGMRES method with
the three different block preconditioners. In these tests, we fix ε = µ−1 = 1 and
investigate the robustness of the proposed preconditioners with respect to the time
step size, τ , and mesh size. The iteration counts shown in Table 2 are recorded at
the second time step, though the iterations for other time steps are similar. Based
on the results, we see that the block preconditioners are effective and robust with
respect to these parameters. It should be noted that the number of overall iterations
depends on the tolerance we use for solving the diagonal blocks. In general, relaxing
the inner tolerance leads to a slight increase of the overall number of iterations and
tightening leads to a slight decrease. Since we already achieve good performance with
a relatively large tolerance (i.e., 10−2), we use this for all tests below.

Next, we consider the block preconditioners based on exact block factorization,
namely, the block lower triangular preconditioner, XLD, the block upper triangular
preconditioner, XDU , and the symmetric preconditioner, XLDU , all defined in (44).
The diagonal blocks are also solved inexactly by preconditioned GMRES with a rel-
ative residual reduction set at 10−2. As before, the outer FGMRES iterations are
terminated when the value of the norm of the relative residual goes below 10−8.
Table 3 shows the number of iterations of preconditioned FGMRES with the three
different block preconditioners. In these tests, we again fix ε = µ−1 = 1 and see that
the block preconditioners based on exact block factorization are effective and robust
with respect to τ and mesh size.

Finally, we investigate the robustness of the proposed block preconditioners with
respect to the physical parameters, ε and µ. We fix the mesh size (Mesh 3 is used in
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Table 4
Iteration counts for test problem using Mesh 3 with τ = 0.1, µ−1 = 1, and jumps in ε.

10−6 10−4 10−2 1 102 104 106

WD 28 28 27 25 27 21 16
WL 9 9 8 7 7 9 8
WU 9 9 8 8 7 6 6
XLD 7 8 7 6 6 8 8
XDU 7 7 6 6 6 5 5
XLDU 4 4 4 4 4 4 4

Table 5
Iteration counts for test problem using Mesh 3 with τ = 0.1, ε = 1, and jumps in µ−1.

10−6 10−4 10−2 1 102 104 106

WD 17 22 27 25 25 25 25
WL 10 10 9 7 7 7 7
WU 9 9 8 8 8 8 8
XLD 9 9 8 6 6 6 6
XDU 6 6 6 6 6 6 6
XLDU 5 5 4 4 4 4 4

all the following tests) and time step size, τ = 0.1, and consider jumps in ε and µ.
The tolerance of the inner GMRES iterations for solving each diagonal block remains
10−2 for relative residual reduction and the outer FGMRES iterations are terminated
when the relative residual has norm smaller than 10−8. As before, the iteration counts
are for the second time step, with other time steps obtaining similar values.

Table 4 reports the number of iterations when there is jump in ε, but µ−1 is fixed
to be 1. The jump is chosen so that ε = 1 in the spherical annulus between radii 1
and 2, as well as between radii 3 and 4. The jump appears between radii 2 and 3 and
ranges from 10−6 to 106. The results confirm that the proposed preconditioners are
robust with respect to jumps in ε. Table 5 reports similar results for jumps in µ−1,
but with ε fixed to be 1. Similarly to the previous case, the jump appears between
radii 2 and 3 and ranges from 10−6 to 106. Outside this region, µ−1 = 1. The results
show that the proposed precondtioners are also robust with respect to jumps in µ−1.

Analyzing the results in Tables 2–5, we see that the block preconditoners based
on exact block factorization perform slightly better than the block preconditioners
based on well-posedness in terms of iteration count. The dominant cost in computing
the action of each of these preconditioners, however, is in approximately solving the
diagonal blocks. Since such components are present in all of the preconditioners
tested, the overall computational work of applying each of them is similar. Figure 2
confirms this result when comparing the timing to completely solve the system over
20 time steps on the finest grid, Mesh 4, with τ = 0.1 (again assuming ε = µ−1 = 1).
Overall, using XLDU yields the most efficient results.

5.2. Cube domain. Finally, to test the solvers on other geometries, we consider
solving system (1)–(4) on a cube [−4, 4] × [−4, 4] × [−4, 4] with a cubic obstacle
[−1, 1]× [−1, 1]× [−1, 1] in the middle. On such a domain, we do not have an exact
solution anymore. We repeat similar tests as was done for the spherical case to
show the robustness of our preconditioners. Again, the diagonal blocks are solved
inexactly by preconditioned GMRES with relative residual reduction set at 10−2 and
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Fig. 2. Comparison of CPU times using the six different block preconditioners for the full
simulation of (1)–(5). In all runs, τ = 0.1, ε = µ−1 = 1, and we solve on Mesh 4 of the spherical
domain.

Table 6
Cubic meshes. Iteration counts for the block preconditioners based on well-posedness: (left)

block diagonal, WD (34); (center) block lower triangular, WL (35); (right) block upper triangular,
WU (36); Diagonal blocks are solved inexactly.

WD
H

HHHτ
h 1

8
1
16

1
32

1
64

0.2 22 26 28 28
0.1 16 22 26 27
0.05 10 15 21 25
0.025 7 10 14 20

WL
1
8

1
16

1
32

1
64

7 8 8 9
6 7 8 8
5 6 7 7
4 5 6 7

WU
1
8

1
16

1
32

1
64

7 8 8 8
6 7 8 8
5 6 8 7
4 5 6 7

the stopping criterion for the outer FGMRES method is 10−8 for the relative residual.
In Tables 6 and 7, we fix ε = µ−1 = 1 and see that the block preconditioners are
effective and robust with respect to τ and mesh size h. In Tables 8 and 9, we fix
τ and h and investigate the performance with respect to jumps in the region ε or
µ−1. The jumps appears in ([−3, 3] × [−3, 3] × [−3, 3])\([−2, 2] × [−2, 2] × [−2, 2]).
The results show that the proposed preconditioners are robust with respect to the
jumps in ε or µ−1. Last, Figure 3 compares the timings to completely solve the
system over 20 time steps on the finest grid, h = 1

64 , with τ = 0.1 (again assuming
ε = µ−1 = 1). As in the spherical case, using XLDU yields the most efficient results.
Thus, changing the geometry of the problem did not affect the performance of the
solvers presented here.

6. Conclusions. In [1], it was shown that a structure-preserving discretization
of the full time-dependent Maxwell’s equations is capable of resolving the numeri-
cal approximation of asymptotically disappearing solutions. Here, we show that the
resulting linear systems are also solved efficiently. Block preconditioners for GM-
RES based on either the well-posedness of the discretization or a block factoriza-
tion approach yield linear solvers that are robust with respect to simulation param-
eters, including time step size and mesh size, as well as the physical parameters of
the problem. In the process, we have additionally shown the well-posedness of the



SOLVERS FOR DISSIPATIVE MAXWELL’S EQUATIONS S21

Table 7
Cubic meshes. Iteration counts for the block preconditioners based on block factorization: (left)

block lower triangular, XLD; (center) block upper triangular, XDU ; (right) symmetric, XLDU . Di-
agonal blocks are solved inexactly.

XLD
HHHHτ

h 1
8

1
16

1
32

1
64

0.2 5 5 5 6
0.1 5 5 5 5
0.05 4 4 5 5
0.025 4 4 4 5

XDU
1
8

1
16

1
32

1
64

5 6 5 7
5 5 5 6
4 5 5 6
4 4 5 5

XLDU
1
8

1
16

1
32

1
64

4 4 4 4
4 4 4 4
4 4 4 4
3 4 4 4

Table 8
Iteration counts for test problem on cubic domain with h = 1/32, τ = 0.1, µ−1 = 1, and jumps

in ε.

10−6 10−4 10−2 1 102 104 106

WD 29 28 27 26 26 20 15
WL 10 10 8 8 7 7 7
WU 9 9 8 8 7 6 7
XLD 8 8 7 5 6 7 7
XDU 6 6 6 5 5 5 5
XLDU 5 4 4 4 4 4 4

Table 9
Iteration counts for test problem on cubic domain with h = 1/32, τ = 0.1, ε = 1, and jumps

in µ−1.

10−6 10−4 10−2 1 102 104 106

WD 17 21 26 26 26 26 26
WL 10 10 9 8 8 8 8
WU 10 10 9 8 8 8 8
XLD 9 9 7 5 5 5 5
XDU 6 6 6 5 6 6 6
XLDU 4 4 4 4 4 4 4

WD WL WU XLD XDU XLDU
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Fig. 3. Comparison of CPU times using the six different block preconditioners for the full
simulation of (1)–(5). In all runs, τ = 0.1, ε = µ−1 = 1, and we solve on the cube domain with
h = 1

64 .
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structure-preserving discretization and how to preserve the divergence-free constraint
for the magnetic field within the linear solver itself.

Such block preconditioners can be applied to other systems, including those dis-
cretized with high-order finite elements which are part of a deRham complex. Future
work involves treating more complicated examples concerning the expansion of elec-
tromagnetic waves [15] and extending these results to other applications for which
exponentially decaying solutions exist. By using symplectic time integration and
structure-preserving discretizations, we will apply the ideas developed here to build
block preconditioners that will efficiently solve for the solutions that preserve impor-
tant physical properties.
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