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a b s t r a c t

Vector-potential formulations are attractive for electromagnetic problems in two dimen-
sions, since they reduce both the number and complexity of equations, particularly in
coupled systems, such as magnetohydrodynamics (MHD). In this paper, we consider the
finite-element formulation of a vector-potential model of two-dimensional resistive MHD.
Existence and uniqueness are considered separately for the continuumnonlinear equations
and the discretized and linearized form that arises from Newton’s method applied to a
modified system. Under some conditions, we prove that the solutions of the original and
modified weak forms are the same, allowing us to prove convergence of the discretization
and well-posedness of the nonlinear iteration near a solution.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetohydrodynamics (MHD) models the flow of a charged fluid, or plasma, in the presence of electromagnetic
fields. There are many formulations of MHD, depending on the domain and physical parameters considered. This includes
assumptions associatedwith the coupling between the electric field, current density, and Ohm’s law, leading to formulations
such as ideal, resistive, andHallMHD [1]. In this paper,we use a single incompressible fluidmodel, treating ions and electrons
together, along with a resistive formulation. The resulting visco-resistive model couples the Navier–Stokes equations with
Maxwell’s equations, forming a nonlinear system of partial differential equations (PDEs). Moreover, we focus on time-
independent solutions, with our primary focus on existence and uniqueness of solutions to the nonlinear and linearized
systems of equations.

The equations of stationary, incompressible single fluid MHD posed in three dimensions are considered in (for example)
[2,3]. Under some conditions on the data, the existence and uniqueness of solutions to weak formulations of the equations is
known both in the continuumand for certain discretizations. The focus of this paper is onMHD in two dimensions (2D). Here,
a vector potential formulation was used in [4,5]. Vector potential formulations are attractive for electromagnetic problems
with two-dimensional dynamics, since they substantially reduce the complexity of the resulting equations, by trading vector
for scalar unknowns, and the curl terms that arise in Maxwell’s equations for standard gradient and diffusion operators.
Despite this attractiveness, there is a scarcity of analysis for multiphysics systems using vector potential formulations, for
both the continuumanddiscretizedmodels. In this paper,wedemonstrate that standard analysis techniques can be extended
from three-dimensional MHD [2,3] to the two-dimensional discretizations considered in [4,5], although some complications
arise that can only be addressed (to our knowledge) by making more restrictive assumptions.
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Fig. 1. Cross-sectional view of large aspect-ratio tokamak geometry, withmajor radius, R, andminor radius, r , satisfying R ≫ r . A cross-section of thickness
dr can be unfolded to create a Cartesian grid as pictured.

Two-dimensional models of MHD arise when considering magnetically confined plasmas, such as in a large aspect-ratio
tokamak reactor, as illustrated in Fig. 1. In this setting, the magnetic field along the toroidal direction (denoted by z) is very
large in order to contain the plasma. Consequently, the resulting dynamics decouple into a two-dimensional problem posed
over the poloidal cross-section. While such a configuration can be accurately studied using full three-dimensional models,
the computational cost of such models is substantially more than their two-dimensional counterparts, thus motivating the
many numerical studies of MHD in two dimensions.

While numerical results using the vector potential formulation already exist in the literature, [4,5] focus primarily on
linear algebraic aspects of the solution of the resulting linearized systems of equations, leaving open the questions of
existence and uniqueness of solutions. In this paper, we focus on the theoretical analysis of both the continuum model and
its discretization, applying standard theoretical tools for the existence and uniqueness of solutions at both the continuum
and discrete levels. For the discretization, this is complicated when considering a nonconforming discretization, as was
used in [4,5]. Nonetheless, under moderate conditions, we prove that Newton’s method yields well-posed linearizations and
converges to the solution of the weak formulation.

An outline of this paper is as follows. In Section 2, we detail the vector-potential formulation for the MHD problem in 2D
and, under standard conditions, we prove the existence and uniqueness of the continuum solution. In Section 3,we introduce
a modified, ‘‘uncurled", formulation for the MHD problem and present the analysis of the discretized problem using a mixed
finite-element method. In Section 4, we consider Newton’s method for solving the nonlinear system. Numerical results
supporting the theory are presented in Section 5. Finally, some concluding remarks are given in Section 6.

In what follows, the letter C (with no subscript) denotes a generic positive constant which may be different depending
on the context. When usedwith a subscript, the constant is the same in all instances. For a Lipschitz domainΩ ⊂ R2, denote
by Lp, 1 ≤ p ≤ ∞, the Lebesgue space of p-integrable functions, endowed with the norm ∥ · ∥0,p. Denote the standard
Euclidean norm as |·|, the classical L2(Ω) inner product and norm as ⟨·, ·⟩0 and ∥ · ∥0, respectively, and ⟨f , g⟩ =

∫
Ω
fgdX,

where fg ∈ L1(Ω). The standard L2-based Sobolev space with integer or fractional exponent s is denoted by Hs(Ω). We write
∥ · ∥s for its norm.

For convenience, we introduce the spaces

J :=
(
H1

0 (Ω)
)2

∩ H(div0;Ω), W :=
(
H1

0 (Ω)
)2
, Q := L20(Ω),

X := H1
τ (Ω) ∩ L20(Ω), X̃ := H1(Ω) ∩ L20(Ω), X0 := H1

γ (Ω), X̃0 := H1
0 (Ω),

endowed with natural Sobolev norms. Here, in addition to the standard (scalar and vector) spaces H1(Ω) and H1
0 (Ω), we

take

H(div0;Ω) :=

{
v⃗
⏐⏐v⃗ ∈

(
L2(Ω)

)2
, ∇ · v⃗ = 0 inΩ

}
, L20(Ω) :=

{
q
⏐⏐⏐q ∈ L2(Ω),

∫
Ω

q dX = 0
}
,

H1
τ (Ω) :=

{
φ
⏐⏐φ ∈ H1(Ω),∆φ ∈ L2(Ω), and

∂φ

∂ n⃗
|∂Ω= 0

}
, H1

γ (Ω) :=

{
φ|φ ∈ H1

0 (Ω), and∆φ ∈ L2(Ω)
}
,
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and define the norm in X (X0) as

∥φ∥X :=

(
∥φ∥

2
1 + ∥∆φ∥

2
0

) 1
2
.

2. Steady-state visco-resistive MHD

In this paper, we consider cylindrical three-dimensional domains, Ω̂ = Ω×[z0, z1], whereΩ ⊂ R2 is Lipschitz, bounded
and connected, which are coupledwith a large incidentmagnetic field in the z-direction. To begin, we consider the one-fluid
visco-resistive MHD model, where the dependent variables are the fluid velocity u⃗, the hydrodynamic pressure p, and the
magnetic field B⃗. The equations are

∂ u⃗
∂t

+ (u⃗ · ∇)u⃗ − ∇ · (T + TM ) + ∇p = F⃗ , (1)

∂ B⃗
∂t

− ∇ × (u⃗ × B⃗) + ∇ × (
1

Rem
∇ × B⃗) = G⃗, (2)

∇ · u⃗ = 0, (3)
∇ · B⃗ = 0, (4)

where G⃗ = −∇ × E⃗stat, and E⃗stat is the static component of the electric field. The Newtonian and magnetic stress tensors
are

T =
1

2Re

[
∇u⃗ + ∇u⃗T ], and TM = B⃗ ⊗ B⃗ −

1
2
|B⃗|

2
I,

respectively. We define the tensor B⃗⊗ B⃗ component-wise as (B⃗⊗ B⃗)i,j = BiBj and F⃗ = (f⃗ , 0) ∈
(
H−1(Ω̂)

)3 for f⃗ ∈
(
H−1(Ω)

)2,
G⃗ ∈

(
L2(Ω̂)

)3. Additionally, we define the standard nondimensional Reynolds number, Re, and magnetic Reynolds number,
Rem:

Re =
ρUL
ν
, Rem =

µ0UL
η

,

for a characteristic velocity, U , and a characteristic length scale, L. The physical parameters, all assumed constant, are the
fluid viscosity ν, the fluid density ρ, the magnetic permeability of free space µ0, and the magnetic resistivity η.

Assuming that the domain is coupled with a large incident magnetic field in the z-direction, the resulting dynamics
decouple into a two-dimensional problem over Ω with simple behaviour in the z-direction. For the tokamak pictured in
Fig. 1, this is equivalent to assuming both a large incident magnetic field in the toroidal direction as well as a large aspect-
ratio, so that the curvature of the tokamak is negligible. Considering the resulting plasma behaviour over Ω (the poloidal
cross-section of the tokamak), and assuming no variation in the z- (toroidal-) direction, we take B⃗ = (B1(x, y), B2(x, y), B0)
and u⃗ = (u1(x, y), u2(x, y), u0). Then,we complete the above systemwith homogeneous boundary conditions on the velocity,
u⃗ = 0⃗ on ∂Ω , and either perfect conductor or perfect insulator boundary conditions on B⃗, B⃗ · n⃗ = 0 or B⃗ × n⃗ = 0⃗ on ∂Ω ,
respectively, where n⃗ denotes the outward normal vector on ∂Ω .

Noting that∇·B⃗ = 0,wemust have ∂B1
∂x +

∂B2
∂y = 0,which allowsus towrite B⃗ = ∇×A⃗+(0, 0, B0),where A⃗ = (0, 0, A(x, y)).

Consequently, we rewrite Eqs. (1)–(4) in terms of the vector potential, A⃗. Considering the continuum problem (1)–(4), direct
calculation shows that B0 and u0 do not appear in the resulting equations for the other components of B⃗ and u⃗ and, so, we
ignore them (by treating them as zero) in what follows.

2.1. Weak formulation

We now introduce the weak formulation of (1)–(4) for the two-dimensional domain Ω . Writing B⃗ = ∇ × A⃗ for vector
potential, A⃗, gives ∇ · B⃗ = 0 and Eq. (4) is automatically satisfied. Thus, we no longer include it in the formulation.

If B⃗ ∈ H1(Ω̂), then a standard vector calculus identity gives

∇ · (B⃗ ⊗ B⃗ −
1
2
|B⃗|

2
I) = (∇ × B⃗) × B⃗ + (∇ · B⃗) · B⃗,

while the same equality holds in a weak sense (sufficient for what follows) if B⃗ ∈
(
L4(Ω̂)

)3
,∇ · B⃗ ∈

(
L2(Ω̂)

)3, and
∇ × B⃗ ∈

(
L2(Ω̂)

)3. If, additionally, ∇ · B⃗ = 0 pointwise, then

∇ · (B⃗ ⊗ B⃗ −
1
2
|B⃗|

2
I) = (∇ × B⃗) × B⃗.
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When A ∈ X, taking B⃗ = ( ∂A
∂y ,−

∂A
∂x , 0) ensures that B⃗ ∈

(
L4(Ω̂)

)3, ∇ · B⃗ = 0 pointwise, and ∇ × B⃗ ∈
(
L2(Ω̂)

)3, giving∫
Ω̂

∇ · (B⃗ ⊗ B⃗ −
1
2
|B⃗|

2
I) · V⃗dX̂ =

∫
Ω̂

(∇ × B⃗) × B⃗ · V⃗dX̂

=

∫
Ω̂

(−∆A ·
∂A
∂x
,−∆A ·

∂A
∂y
, 0) · V⃗dX̂

= −(z1 − z0)
∫
Ω

∆A · (∇A · v⃗) dX, (5)

for any V⃗ = (v⃗, v3) ∈
(
H1(Ω̂)

)3, with v⃗ ∈
(
H1(Ω)

)2.
Furthermore,

TM = B⃗ ⊗ B⃗ −
1
2
∥B⃗∥2I

=

(
∂Az
∂y

−
∂Az
∂x

)
·

(
∂Az
∂y −

∂Az
∂x

)
−

1
2

[(
∂Az

∂y

)2

+

(
∂Az

∂x

)2
]
I

=

⎛⎜⎜⎝
1
2

[(
∂Az
∂y

)2
−
(
∂Az
∂x

)2]
−
∂Az
∂x ·

∂Az
∂y

−
∂Az
∂x ·

∂Az
∂y

1
2

[(
∂Az
∂x

)2
−

(
∂Az
∂y

)2]
⎞⎟⎟⎠ .

Taking C⃗ = ∇ × (0, 0, ϕ) for ϕ ∈ X, then we can rewrite the weak formulation of (2), discarding the time derivative,∫
Ω̂

[
−∇ × (u⃗ × B⃗) · C⃗ + ∇ × (Re−1

m ∇ × B⃗) · C⃗
]
dX̂ =

∫
Ω̂

G⃗ · C⃗dX̂,

as ∫
Ω

−(u1, u2) · ∇A ·∆ϕ dX +

∫
Ω

Re−1
m ∆A ·∆ϕ dX =

∫
Ω

E0
·∆ϕdX,

where E0 is the z-component of the electrostatic part, E⃗stat, and we choose E0 so that
∫
Ω
E0dX = 0. We drop the common

scaling of (z1−z0) when switching from integrals over Ω̂ to those overΩ . In the following, we denote u⃗ = (u1(x, y), u2(x, y)).
Note that with B⃗ = (∂A/∂y,−∂A/∂x, 0), the perfect conductor boundary condition, B⃗· n⃗ = 0 is implied by a homogeneous

Dirichlet boundary condition on A, as is included in the space X0, while the perfect insulator boundary condition, B⃗× n⃗ = 0⃗,
is implied by a homogeneous Neumann boundary condition on A, as is included in the space X. In what follows, we state
weak formulations and results for the latter case, A ∈ X (and, from Section 3 onwards, A ∈ X̃) as proofs for this case are
slightly more technical than for A ∈ X0 (or A ∈ X̃0). Where substantial differences occur between the two cases, we provide
remarks to clarify. With homogeneous Dirichlet boundary conditions on u⃗ and perfect insulator boundary conditions on A,
the weak form of (1)–(4) in two dimensions is : find u⃗ ∈ W, A ∈ X, p ∈ Q such that

a1(u⃗, v⃗) + c0(u⃗; u⃗, v⃗) + c1(A; v⃗, A) + b(p, v⃗) = ⟨f⃗ , v⃗⟩, (6)
a2(A, ϕ) − c1(A; u⃗, ϕ) = ⟨E0,△ϕ⟩, (7)

b(q, u⃗) = 0, (8)

for all v⃗ ∈ W, ϕ ∈ X, q ∈ Q, with Su⃗ =
1
2 (∇u⃗ + ∇u⃗T ), where

a1(u⃗, v⃗) := Re−1
∫
Ω

Su⃗ : ∇v⃗ dX = Re−1
∫
Ω

Su⃗ : Sv⃗ dX,

a2(φ,ψ) := Re−1
m

∫
Ω

∆φ ·∆ψ dX,

b(q, v⃗) := −

∫
Ω

q(∇ · v⃗) dX,

c0(w⃗; u⃗, v⃗) :=
1
2

∫
Ω

(w⃗ · ∇)u⃗ · v⃗ dX −
1
2

∫
Ω

(w⃗ · ∇)v⃗ · u⃗ dX,

c1(ψ; v⃗, φ) :=

∫
Ω

∆φ · ∇ψ · v⃗ dX.

Remark 2.1. Note that the natural trilinear form c(w⃗; u⃗, v⃗) :=
∫
Ω
(w⃗ · ∇)u⃗ · v⃗ dX is skew-symmetric in (u⃗, v⃗) when

w⃗ ∈ H(div0,Ω), allowing the use of c0(w⃗; u⃗, v⃗) here in place of c(w⃗; u⃗, v⃗).
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2.2. Properties of the weak formulation

In this section, we briefly analyse the weak form in Eqs. (6)–(8), which we write as

Formulation 1. Find (u⃗, p, A) ∈ W × Q × X such that

A(u⃗, A; v⃗, ϕ) + C(u⃗, A; u⃗, A; v⃗, ϕ) + B(p; v⃗, ϕ) = L(v⃗, ϕ), (9)
B(q; u⃗, A) = 0, (10)

for all (v⃗, q, ϕ) ∈ W × Q × X,

with

A(u⃗, A; v⃗, ϕ) := a1(u⃗, v⃗) + a2(A, ϕ),
B(q; v⃗, ϕ) := b(q, v⃗),

C(w⃗, ψ; u⃗, φ; v⃗, ϕ) := c0(w⃗; u⃗, v⃗) + c1(ψ; v⃗, φ) − c1(ψ; u⃗, ϕ),
L(v⃗, ϕ) := ⟨f⃗ , v⃗⟩ + ⟨E0,△ϕ⟩.

We define the product space W × X with the norm |||(v⃗, ϕ)|||2:= ∥v⃗∥2
1 + ∥ϕ∥

2
X and define the operator norm, |||L|||−:=

sup(0⃗,0)̸=(v⃗,ϕ)∈J×X
|L(v⃗,ϕ)|
|||(v⃗,ϕ)||| . Next, we consider the properties of the forms A, B, and C.

Lemma 2.1. For any (v⃗, ϕ), (w⃗, ψ) ∈ W × X, we have

A(v⃗, ϕ; v⃗, ϕ) ≥ cα min{Re−1, Re−1
m }|||(v⃗, ϕ)|||2, (11)

A(w⃗, ψ; v⃗, ϕ) ≤ max{2Re−1, Re−1
m }|||(w⃗, ψ)|||·|||(v⃗, ϕ)|||,

where cα ≤ 1 is a constant depending only onΩ .

Proof. Since (v⃗, ϕ) ∈ W × X, we have

A(v⃗, ϕ; v⃗, ϕ) = Re−1
∫
Ω

Sv⃗ : Sv⃗ dX +

∫
Ω

Re−1
m △ϕ · △ϕ dX

= Re−1
∥Sv⃗∥2

0 + Re−1
m ∥△ϕ∥

2
0

≥ β1Re−1
∥v⃗∥2

1 + β2Re−1
m ∥ϕ∥

2
X

≥ cα min{Re−1, Re−1
m }|||(v⃗, ϕ)|||2,

where cα = min{β1, β2}, β1 comes from Korn’s Inequality [6, Corollary 11.2.22], and β2 comes from an equivalent norm
argument [7]. This gives the coercivity of A.

For continuity,

A(u⃗, ψ; v⃗, ϕ) = Re−1
∫
Ω

Su⃗ : Sv⃗ dX + Re−1
m

∫
Ω

∆ψ ·∆ϕ dX

≤ 2Re−1
∥u⃗∥1∥v⃗∥1 + Re−1

m ∥ψ∥X∥ϕ∥X

≤ max{2Re−1, Re−1
m }|||(u⃗, ψ)|||·|||(v⃗, ϕ)|||,

via the Cauchy–Schwarz inequality. □

Remark2.2. Ifϕ ∈ X0, then ∥∆ϕ∥
2
0 ≥ β2∥ϕ∥

2
X also holds. This is due to [8, Theorem1.4.5] and the inequality, ∥ϕ∥1 ≤ ∥ϕ∥H3/2 .

We state two Lemmas that follow directly from the standard Compact Imbedding Theorem for Sobolev spaces (see,
e.g., [9], Theorem I.1.2), showing the trilinear forms c0 and c1 are well defined.

Lemma 2.2. If u⃗, v⃗, w⃗ ∈
(
H1(Ω)

)2, then
|c0(w⃗; u⃗, v⃗)| ≤ ∥w⃗∥0,4 · ∥∇u⃗∥0 · ∥v⃗∥0,4 ≤ C0∥w⃗∥1 · ∥u⃗∥1 · ∥v⃗∥1, (12)

where C0 is a constant depending only onΩ .

Lemma 2.3. If ψ, φ ∈ X(Ω) and v⃗ ∈
(
H1(Ω)

)2, then
|c1(ψ; v⃗, φ)| ≤ ∥∇ψ∥0,4 · ∥∆φ∥0 · ∥v⃗∥0,4 ≤ ∥ψ∥1,4 · ∥∆φ∥0 · ∥v⃗∥0,4 ≤ C1∥ψ∥X · ∥φ∥X · ∥v⃗∥1, (13)

where C1 is a constant depending only onΩ .
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Proof. This is due to the fact that X is imbedded into H3/2(Ω) [8, Theorem 1.5.4], and H3/2(Ω) is imbedded into W 1,4(Ω)
(see [9]). □

Lemma 2.4. For any w⃗, u⃗, v⃗ ∈ W and ψ, φ, ϕ ∈ X , the trilinear form C has the following properties

|C(w⃗, ψ; u⃗, φ; v⃗, ϕ)| ≤ Cc |||(w⃗, ψ)|||·|||(u⃗, φ)|||·|||(v⃗, ϕ)|||, (14)

where Cc is a constant only depending onΩ . Furthermore,

C(w⃗, ψ; v⃗, ϕ; v⃗, ϕ) = 0. (15)

Proof. The continuity bound follows directly from inequalities (12) and (13). That C(w⃗, ψ; v⃗, ϕ; v⃗, ϕ) = 0 follows directly
from its definition, and those of c0 and c1. □

The form b(q, v⃗) is continuous and satisfies the following inf–sup condition

inf
0̸=q∈Q

sup
0̸⃗=v⃗∈W

b(q, v⃗)
∥v⃗∥1∥q∥0

≥ Γ > 0, (16)

where Γ is a constant depending only onΩ [9, Chapter I.5.1].
The form B is obviously continuous:

|B(q; v⃗, ϕ)| ≤ C∥q∥0∥v⃗∥1 ≤ C∥q∥0|||(v⃗, ϕ)|||,

for all (v⃗, q, ϕ) ∈ W × Q × X, with a constant C > 0. Furthermore, it inherits the inf–sup condition from b.

Lemma 2.5. There exists a constant Γ > 0 depending only onΩ , such that

sup
(0⃗,0)̸=(v⃗,ϕ)∈W×X

B(q; v⃗, ϕ)
|||(v⃗, ϕ)|||

≥ Γ ∥q∥0,

for all q ∈ Q.

Proof. Since

B(q; v⃗, ϕ) = b(q, v⃗),

we have

sup
(0⃗,0)̸=(v⃗,ϕ)∈W×X

B(q; v⃗, ϕ)
|||(v⃗, ϕ)|||

≥ sup
0̸⃗=v⃗∈W

b(q, v⃗)
∥v⃗∥1

≥ ∥q∥0 · Γ ,

where the last inequality follows directly from (16). □

2.3. Existence and uniqueness of solutions

From [9], we quote the main theorem that we will apply to this weak formulation.

Theorem 2.1 ([9], Theorem IV.1.3). Let V be a separable Hilbert space with the norm ∥ · ∥V , l be a linear functional in the dual
space V ′ and, for w ∈ V , the mapping (u, v) → a(w; u, v) be a bilinear continuous form on V × V . Assume that the following
hold:

• the bilinear form a(w; v, v) is uniformly V-coercive with respect to w, i.e., there exists a constant α > 0 such that

a(w; v, v) ≥ α∥v∥2
V , ∀v,w ∈ V .

• there exists a continuous and monotonically increasing function L : R+ → R+ such that for all µ > 0

|a(w1; u, v) − a(w2; u, v)| ≤ L(µ)∥u∥V∥v∥V∥w1 − w2∥V ,

∀u, v ∈ V , w1, w2 ∈ Sµ = {w ∈ V ; ∥w∥V ≤ µ}.

• the linear function l and α satisfy
∥l∥V ′

α2 · L(∥l∥V ′/α) < 1.

Then the problem: find u ∈ V such that

a(u; u, v) = l(v), ∀v ∈ V ,

has a unique solution that satisfies the stability bound ∥u∥V ≤ α−1
∥l∥V ′ .
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Theorem 2.2. Let f⃗ ∈
(
H−1(Ω)

)2 and E0
∈ L2(Ω), and assume that

Cc |||L|||−

c2α min{Re−2, Re−2
m }

< 1, (17)

where cα comes from (11), and Cc comes from (14). Then, there exists a unique solution (u⃗, p, A) inW × Q × X of Formulation 1.
Furthermore, we have the stability bounds

|||(u⃗, A)|||≤
|||L|||−

cα min{Re−1, Re−1
m }

and

∥p∥0 ≤ Γ −1
[
∥f⃗ ∥−1 + 2Re−1

∥u⃗∥1 + C0∥u⃗∥2
1 + C1∥A∥

2
1

]
,

where C0 comes from (12), and C1 comes from (13).

Proof. We first apply Theorem 2.1 to Formulation 1 restricted to (u⃗, A) ∈ J × X, satisfying the constraint in Eq. (10). We
note that J × X is separable, since J is a closed subset of

(
H1(Ω)

)2, X and L20(Ω) are isomorphic (see [7]), and
(
H1(Ω)

)2 and
L20(Ω) are separable Hilbert Spaces.

For any (w⃗, ψ), define the mapping ((u⃗, φ), (v⃗, ϕ)) → A1(w⃗, ψ; u⃗, φ, v⃗, ϕ), where

A1(w⃗, ψ; u⃗, φ, v⃗, ϕ) = A(u⃗, φ; v⃗, ϕ) + C(w⃗, ψ; u⃗, φ; v⃗, ϕ).

From inequalities (11) and (15), we have

|A1(w⃗, ψ;v⃗, ϕ; v⃗, ϕ)|= |A(v⃗, ϕ; v⃗, ϕ) + C(w⃗, ψ; v⃗, ϕ; v⃗, ϕ)| = |A(v⃗, ϕ; v⃗, ϕ)|

≥ cαmin{Re−1, Re−1
m }|||(v⃗, ϕ)|||2 ∀(w⃗, ψ), (v⃗, ϕ) ∈ J × X.

Finally, linearity in the first argument of C and inequality (14) give

|A1(w⃗1, ψ1; u⃗, φ; v⃗, ϕ) − A1(w⃗2, ψ2; u⃗, φ; v⃗, ϕ)|
= |C(w⃗1, ψ1; u⃗, φ; v⃗, ϕ) − C(w⃗2, ψ2; u⃗, φ; v⃗, ϕ)|
= |C(w⃗1 − w⃗2, ψ1 − ψ2; u⃗, φ; v⃗, ϕ)|
≤ Cc |||(w⃗1 − w⃗2, ψ1 − ψ2)|||·|||(u⃗, φ)|||·|||(v⃗, ϕ)|||,

∀(w⃗1, ψ1), (w⃗2, ψ2), (u⃗, φ), (v⃗, ϕ) ∈ J × X. In the notation of Theorem 2.1, this gives L(µ) = Cc , where Cc comes from (14).
Thus, by Theorem 2.1, assumption (17) proves existence of a unique solution to Formulation 1 restricted to J × X. Let

(u⃗, A) ∈ J × X be that unique solution, which satisfies the stability bound stated.
By the inf–sup condition in Eq. (16), there also exists a unique solution of the following problem: find p ∈ Q such that

b(p, v⃗) = B(p; v⃗, ϕ) = L(v⃗, ϕ) − A(u⃗, A; v⃗, ϕ) − C(u⃗, A; u⃗, A; v⃗, ϕ),
= ⟨f⃗ , v⃗⟩ − a1(u⃗, v⃗) − c0(u⃗; u⃗, v⃗) − c1(A; v⃗, A),

for all v⃗ ∈ W \ J [9, Theorem IV.1.4].
From the inf–sup condition, we have

Γ ∥p∥0 ≤ sup
0̸⃗=v⃗∈W

b(q, v⃗)
∥v⃗∥1

= sup
0̸⃗=v⃗∈W

⟨f⃗ , v⃗⟩ − a1(u⃗, v⃗) − c0(u⃗; u⃗, v⃗) − c1(A; v⃗, A)
∥v⃗∥1

.

Combining this with Eqs. (12) and (13), we obtain the bound on p. □

Any conforming mixed finite-element discretization of (9) and (10) necessarily requires the use of higher-order-
conforming elements for A ∈ X, such as Argyris triangle elements, or Bogner–Fox–Schmit elements [10]. By using the
antisymmetric form of c0 in the weak formulation, existence and uniqueness of the solution to the discretized form of
Formulation 1 follows immediately, so long as an appropriate inf–sup stable finite-element pair is used for the velocity
and pressure unknowns. While these approximations have been thoroughly studied, particularly for fourth-order problems,
their use also poses some additional difficulties for implementation and efficient solution of the resulting linearized systems.
Thus, we next consider a modified approach using H1-conforming elements, following [4,5].



J.H. Adler, Y. He, X. Hu et al. / Computers and Mathematics with Applications 77 (2019) 476–493 483

3. Uncurled formulation of MHD

Introducing the vector potential into Eq. (2) leads to the bilinear form a2(φ,ψ), which requires higher-order conforming
elements for discretization. Notice, however, that, in the steady-state case, Eq. (2) can be rewritten as∇×(−u⃗× B⃗+Re−1

m ∇×

B⃗) = −∇ × E⃗stat, which can be simplified into a first-order equation in B⃗, resulting in a second-order equation in A. Using
this in place of (2), we derive an ‘‘uncurled’’ weak formulation: find (u⃗, A) ∈ W × X̃, p ∈ Q such that

a1(u⃗, v⃗) + c0(u⃗; u⃗, v⃗) + c̃1(A; v⃗, A) + b(p, v⃗) = ⟨f⃗ , v⃗⟩, (18)
ã2(A, ψ) + c̃2(A; u⃗, ψ) = ⟨−E0, ψ⟩, (19)

b(q, u⃗) = 0, (20)

for all (v⃗, ψ) ∈ W × X̃, q ∈ Q, where

ã2(φ,ψ) := Re−1
m

∫
Ω

∇φ · ∇ψ dX,

c̃1(φ; v⃗, A) :=

⟨(
1
2

[
∂A
∂y

·
∂φ

∂y
−
∂A
∂x

·
∂φ

∂x

]
,−
∂A
∂x

·
∂φ

∂y

)
,
∂v⃗

∂x

⟩
0

+

⟨(
−
∂A
∂x

·
∂φ

∂y
,
1
2

[
∂A
∂x

·
∂φ

∂x
−
∂A
∂y

·
∂φ

∂y

])
,
∂v⃗

∂y

⟩
0

,

c̃2(φ; u⃗, ψ) :=

∫
Ω

u⃗ · ∇φ · ψ dX.

Note, we now integrate by parts on the stress tensor in (1), writing ⟨∇ · TM , v⃗⟩0 = −⟨TM ,∇v⃗⟩0, since c1(φ, u⃗, ψ) is
obviously ill-defined if∆ψ /∈ L2(Ω). The corresponding term in (7) becomes c̃2(φ; u⃗, ψ) due to the ‘‘uncurling’’ of (2). This is
the formulation used in [4,5]; in [4], an inf–sup stable finite-element method pair is used for discretization of u⃗ and p, while
a stabilized pair was used in [5]. Neither of these papers considered theoretical analysis of this formulation, which we do
here.

The analysis below shows that, in contrast to the formulation considered above, this formulation does not directly yield
unique solutions under the classical theory. To address this, we consider analysis of the weak form at both the continuum
and discrete levels. We separately consider the well-posedness of the Newton linearizations in Section 4.

3.1. Mixed variational formulation

Extending the bilinear form B to act on X̃ gives

B̃(q; v⃗, ψ) := b(q, v⃗),

where the only difference between B and B̃ is that they act on X and X̃, respectively. The mixed variational formulation in
(18)–(20) can then be rewritten as

Formulation 2. Find (u⃗, p, A) ∈ W × Q × X̃ such that

Ã(u⃗, A; v⃗, ψ) + C̃(u⃗, A; u⃗, A; v⃗, ψ) + B̃(p; v⃗, ψ) = L̃(v⃗, ψ), (21)
B̃(q; u⃗, A) = 0,

for all (v⃗, q, ψ) ∈ W × Q × X̃, where

Ã(u⃗, A; v⃗, ψ) := a1(u⃗, v⃗) + ã2(A, ψ),
C̃(w⃗, φ; u⃗, A; v⃗, ψ) := c0(w⃗; u⃗, v⃗) + c̃1(φ; v⃗, A) + c̃2(φ; u⃗, ψ),

L̃(v⃗, ψ) := ⟨f⃗ , v⃗⟩ + ⟨−E0, ψ⟩.

For our later analysis, we note some properties of the terms in this formulation.

Lemma 3.1. Let φ, A ∈ H1(Ω) and v⃗ ∈
(
H1(Ω)

)2, then
∥̃c1(φ; v⃗, A)∥ ≤ C∥φ∥1∥v⃗∥1∥∇A∥0,∞,

where C is a constant depending only onΩ .

Lemma 3.2. Let φ,ψ ∈ H1(Ω) and u⃗ ∈
(
H1(Ω)

)2, then
|̃c2(φ; u⃗, ψ)| ≤ ∥u⃗∥0,4 · ∥∇φ∥0 · ∥ψ∥0,4 ≤ C∥u⃗∥1 · ∥φ∥1 · ∥ψ∥1,

where C is a constant depending only onΩ .



484 J.H. Adler, Y. He, X. Hu et al. / Computers and Mathematics with Applications 77 (2019) 476–493

We define the product spaceW × X̃with the norm

∥(v⃗, ψ)∥2
1 := ∥v⃗∥2

1 + ∥ψ∥
2
1,

and consider ellipticity of Ã on this product space.

Lemma 3.3. For any (v⃗, ϕ) ∈ W × X̃, we have

Ã(v⃗, ϕ; v⃗, ϕ) ≥ c̃α min{Re−1, Re−1
m }∥(v⃗, ϕ)∥2

1,

Ã(w⃗, ψ; v⃗, ϕ) ≤ max{2Re−1, Re−1
m }∥(w⃗, ψ)∥1∥(v⃗, ϕ)∥1,

where c̃α ≤ 1 is a constant depending only onΩ .

Proof. The proof follows that of Lemma 2.1, substituting the Poincaré inequality [6],

∥∇ϕ∥
2
0 ≥ ξ∥ϕ∥

2
1, ∀ϕ ∈ X̃,

for the regularity argument used in the coercivity bound. □

Remark 3.1. For ϕ ∈ X̃0, the Poincaré inequality also gives the coercivity result.

The form B̃ is again continuous:

|B̃(q; v⃗, ψ)| ≤ C∥q∥0∥v⃗∥1 ≤ C̃b∥q∥0∥(v⃗, ψ)∥1, (22)

for all (v⃗, q, ψ) ∈ W × Q × X̃, with a constant C̃b > 0, and inherits the inf–sup condition from b:

Lemma 3.4. There exists a constant Γ > 0 depending only onΩ such that

sup
(0⃗,0)̸=(v⃗,ψ)∈W×X̃

B̃(q; v⃗, ψ)
∥(v⃗, ψ)∥1

≥ Γ ∥q∥0, (23)

for all q ∈ Q.

The form C̃ no longer satisfies the desired zero property C̃(w⃗, φ; v⃗, ψ; v⃗, ψ) = 0. Also, c̃1 is not obviously continuous in
H1(Ω). Consequently, classical results, such as Theorem 2.1, cannot be directly applied to establish existence and uniqueness
of solutions to Formulation 2. Instead, we tackle this question indirectly, leveraging the result given in Theorem 2.2 for
Formulation 1.

3.2. Relationship between solutions of the two formulations

Formulations 1 and 2 offer two weak formulations of the steady-state visco-resistive MHD problem, (1)–(4). A natural
question is whether the solutions of these two formulations are the same. While the spaces X0 and X̃ are the natural spaces
for the above analysis, additional regularity is needed to guarantee some equivalence between the two formulations (see
Remark 3.4). Note that if the boundary of Ω is C1,1 or Ω is convex, then the space X coincides with H2(Ω) up to boundary
conditions (and X0 coincides with H2(Ω) restricted to functions that satisfy a homogeneous Dirichlet boundary condition),
see, for example, [11]. In the following, we prove the equivalence of Formulations 1 and 2 under the assumption thatΩ has
a C1,1 boundary.

Theorem 3.1. Assume that (u⃗, p, A) ∈ W×Q×X is a solution of Formulation 1, then (u⃗, p, A) is also a solution of Formulation 2.

Proof. Let (u⃗, p, A) ∈ W × Q × X be a solution of Formulation 1. According to (5), the following equality holds∫
Ω

∆A · (∇A · v⃗) dX = −

∫
Ω

(∇ · TM ) · v⃗ dX =

∫
Ω

TM : ∇v⃗ dX, ∀v⃗ ∈ W. (24)

Then, (6) is the same as (18). For any ψ ∈ X̃ ⊆ L2(Ω), there exists ϕ ∈ X such that∆ϕ = ψ (see [7, Lemma 2.1]). In (7),∫
Ω

−u⃗ · ∇A ·∆ϕ dX +

∫
Ω

Re−1
m ∆A ·∆ϕ dX = ⟨E0,∆ϕ⟩, ∀ϕ ∈ X,

taking∆ϕ = ψ implies (19). So (u⃗, p, A) is also a solution of Formulation 2. □

Remark 3.2. When ψ ∈ X̃0, [7, Lemma A.1] gives the existence of ϕ ∈ X0 such that∆ϕ = ψ inΩ .

Remark 3.3. Theorem 3.1 stands as an existence theorem for solutions to Formulation 2, since the unique solution to
Formulation 1 (under the assumptions of Theorem 2.2) is always a solution to Formulation 2. This holds as long as A ∈

W 1,4(Ω), which is true since A ∈ X. However, showing the converse result, that smooth-enough solutions of Formulation 2
are also solutions of Formulation 1 requires, to our knowledge, more regularity, as in the following result.
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Theorem 3.2. Assume thatΩ has a C1,1 boundary and (u⃗, p, A) ∈ W×Q× X̃ is a solution of Formulation 2 and that this solution
is smooth enough such that A ∈ H2(Ω). Then, (u⃗, p, A) is also a solution of Formulation 1.

Proof. Let (u⃗, p, A) ∈ W × Q × X̃ be a solution of Formulation 2. For A ∈ X̃ and v⃗ ∈
(
H1

0 (Ω)
)2, the following equality holds∫

Ω

TM : ∇v⃗ dX = −

∫
Ω

(∇ · TM ) · v⃗ dX =

∫
Ω

∆A · (∇A · v⃗) dX, ∀v⃗ ∈ W.

Then, (18) is the same as (6). Furthermore,∫
Ω

[
u⃗ · ∇A · ψ + Re−1

m ∇A · ∇ψ
]
dX = −

∫
Ω

E0
· ψ dX, ∀ψ ∈ X̃,

can be rewritten as∫
Ω

∇A · ∇ψdX = −Rem

∫
Ω

(
E0

+ u⃗ · ∇A
)
· ψ dX, ∀ψ ∈ X̃.

Since
∫
Ω
E0dX = 0 and

∫
Ω
u⃗ · ∇A dX = −

∫
Ω
(∇ · u⃗)A dX +

∫
∂Ω

(u⃗ · n⃗)A dX = 0, we have
∫
Ω
(E0

+ u⃗ · ∇A) dX = 0. Using the
results of Proposition 1.2 of [9], the weak form of finding w ∈ X̃ such that∫

Ω

∇w · ∇ψdX =

∫
Ω

−Rem
(
E0

+ u⃗ · ∇A
)
· ψ dX, ∀ψ ∈ X̃, (25)

has a unique solution, and if w ∈ H2(Ω), then it is the strong solution of the Neumann problem,⎧⎨⎩ −∆w = −Rem(E0
+ u⃗ · ∇A), inΩ,

∂w
∂ n⃗ = 0, on ∂Ω,∫

Ω
w dX = 0.

(26)

SinceΩ has a C1,1 boundary, X = {ϕ ∈ H2(Ω)∩ L20(Ω) |
∂ϕ

∂ n⃗ = 0} [11]. Since A ∈ H2(Ω), from Proposition 1.2 of [9], we have
that (26) has a unique solution, w ∈ H2(Ω), which is given by w = A, implying that −u⃗ · ∇A + Re−1

m ∆A = E0. For ϕ ∈ X,
multiplying both sides by∆ϕ and integrating yields (7). So (u⃗, p, A) is also a solution of Formulation 1. □

Remark 3.4. In order to guarantee the solution of (25) is the solution of (26), extra smoothness is needed, that is,w ∈ H2(Ω)
(i.e., A ∈ H2(Ω)), which is guaranteed whenΩ has a C1,1 boundary.

Remark 3.5. Using the Lax–Milgram Lemma, problem (25) considered over H1
0 (Ω), has one and only one solution, w ∈

H1(Ω). By Theorem 1.8 of [9], if w ∈ H2(Ω), then it is the strong solution of the corresponding Dirichlet problem. Thus,
Theorem 3.2 also applies in the case when A ∈ X̃0 andΩ has a C1,1 boundary.

Theorem 3.3. Assume that Ω has a C1,1 boundary and that (17) holds. Then, Formulation 2 has at least one solution
(u⃗, p, A) ∈ W × Q × X̃, which is the unique solution of Formulation 1. Furthermore, if all of the solutions of Formulation 2
satisfy (u⃗, p, A) ∈ W × Q × X, then Formulation 1 and Formulation 2 have the same solution, and the solution is unique.

Proof. Since (17) holds, Theorem 2.2 states that Formulation 1 has a unique solution (u⃗, p, A). According to Theorem 3.1,
(u⃗, p, A) is also a solution of Formulation 2.

If A ∈ X, Theorem 3.2 states that the solution (u⃗, p, A) of Formulation 2 is also a solution of Formulation 1. However, since
(17) holds, Formulation 1 has only one solution. This means that Formulation 2 has only one solution. □

3.3. Finite-element discretization

In this subsection, we introduce a mixed finite-element approximation of the uncurled formulation and discuss the
convergence rates that are obtained under some standard smoothness assumptions.

Let Th be a quasi-uniform family of subdivisions that partition Ω into triangles or quadrilaterals, K, with diameters
bounded by h [9, Chapter I, Definitions A.2]. Based on these meshes, we construct a series of finite-element spaces satisfying

Wh ⊂ W,Xh ⊂ X̃,Qh ⊂ Q.

The discretization of Formulation 2 can be written as

Formulation 3. Find (u⃗h, ph, Ah) ∈ Wh × Qh × Xh such that

Ã(u⃗h, Ah; v⃗, ψ) + C̃(u⃗h, Ah; u⃗h, Ah; v⃗, ψ) + B̃(ph; v⃗, ψ) = L̃(v⃗, ψ),
B̃(q; u⃗h, Ah) = 0,

for all (v⃗, q, ψ) ∈ Wh × Qh × Xh.
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In the following, we assume that Formulation 3 has a unique solution. We consider the 2D problem and assume that the
solution A ∈ Hs+1(Ω), s > 1, then we have

∥∇A∥0,∞ ≤ CA∥∇A∥s ≤ CA∥A∥s+1, s > 1. (27)

More details can be found in [12, Theorem IV4.12].

Theorem 3.4. Assume that (17) holds and that (u⃗, A) is the solution of Formulation 2 with u⃗ ∈
(
H1(Ω)

)2 and A ∈ Hs+1(Ω) for
s > 1. Let Th be given, and assume that (u⃗h, Ah) is the solution of Formulation 3 satisfying ∥u⃗h∥1 + ∥∇Ah∥0,∞ ≤ dh, where dh is a
constant depending on Th or h. Then,

∥(u⃗ − u⃗h, A − Ah)∥1 ≤ C
(

inf
(v⃗,ψ)∈Wh×Xh

∥(u⃗ − v⃗, A − ψ)∥1 + inf
q∈Qh

∥p − q∥0

)
,

with a constant C > 0, depending on dh, and sufficiently small values of Re and Rem.

Proof. Subtracting the first line of Formulation 3 from (21), we have

Ã(u⃗ − u⃗h, A − Ah; v⃗, ψ) + C̃(u⃗ − u⃗h, A − Ah; u⃗, A; v⃗, ψ) + C̃(u⃗h, Ah; u⃗ − u⃗h, A − Ah; v⃗, ψ) + B̃(p − ph; v⃗, ψ) = 0, (28)

for all (v⃗, ψ) ∈ Wh × Xh.
From (28), for any v⃗ such that b(q, v⃗) = 0 for all q ∈ Qh, we have

Ã(v⃗ − u⃗h, ψ − Ah; v⃗ − u⃗h, ψ − Ah) + C̃(v⃗ − u⃗h, ψ − Ah; u⃗, A; v⃗ − u⃗h, ψ − Ah)
+ C̃(u⃗h, Ah; v⃗ − u⃗h, ψ − Ah; v⃗ − u⃗h, ψ − Ah)

= Ã(v⃗ − u⃗, ψ − A; v⃗ − u⃗h, ψ − Ah) + C̃(v⃗ − u⃗, ψ − A; u⃗, A; v⃗ − u⃗h, ψ − Ah)
+ C̃(u⃗h, Ah; v⃗ − u⃗, ψ − A; v⃗ − u⃗h, ψ − Ah) − B̃(p − ph; v⃗ − u⃗h, ψ − Ah), (29)

For such a v⃗, we also have

B̃(p − ph; v⃗ − u⃗h, ψ − Ah) = B̃(p − q; v⃗ − u⃗h, ψ − Ah), (30)

for all q ∈ Qh.
From (29) and (30), we have the estimate

r.h.s of (29) ≤ ∥(v⃗ − u⃗h, ψ − Ah)∥1

[
max{2Re−1, Re−1

m }∥(v⃗ − u⃗, ψ − A)∥1

+ C∥(v⃗ − u⃗, ψ − A)∥1

(
∥u⃗∥1 + CA∥A∥s+1

)
+ C∥(v⃗ − u⃗, ψ − A)∥1

(
∥u⃗h∥1 + ∥∇Ah∥0,∞

)
+ C̃b∥p − q∥0

]
≤ Cr∥(v⃗ − u⃗h, ψ − Ah)∥1

(
∥(u⃗ − v⃗, A − ψ)∥1 + ∥p − q∥0

)
, (31)

where Cr = max
{
2Re−1, Re−1

m

}
+ 2C ·max

{
∥u⃗∥1 + CA∥A∥s+1,2, ∥u⃗h∥1 + ∥∇Ah∥0,∞

}
+ C̃b, CA comes from (27), and C̃b comes

from (22). Since (u⃗, A) is the solution of the continuous problem and u⃗ ∈ H1(Ω) and A ∈ Hs+1(Ω), then ∥u⃗∥1 + CA∥A∥s+1,2
can be bounded by some constant. By assumption, so can ∥u⃗h∥1 + ∥∇Ah∥0,∞.

Similarly,

l.h.s of (29) ≥ c̃α min{Re−1, Re−1
m } · ∥(v⃗ − u⃗h, ψ − Ah)∥2

1

− C∥(v⃗ − u⃗h, ψ − Ah)∥2
1 ·
(
∥u⃗∥1 + ∥A∥s+1,2

)
− C∥(v⃗ − u⃗h, ψ − Ah)∥2

1 ·
(
∥u⃗h∥1 + ∥∇Ah∥0,∞

)
≥ Cl∥(v⃗ − u⃗h, ψ − Ah)∥2

1, (32)

where Cl = c̃α min{Re−1, Re−1
m }− 2C ·max

{
∥u⃗∥1 + CA∥A∥s+1,2, ∥u⃗h∥1 +∥∇Ah∥0,∞

}
and c̃α comes from Lemma 3.3. Here, we

assume that c̃α min{Re−1, Re−1
m } is large enough such that Cl ≥

c̃α
2 min{Re−1, Re−1

m }.
According to (31) and (32), we have the following estimate

∥(v⃗ − u⃗h, ψ − Ah)∥1 ≤ C
(

∥(u⃗ − v⃗, A − ψ)∥1 + ∥p − q∥0

)
,

where C = Cr/Cl. Furthermore,

∥(u⃗ − u⃗h, A − Ah)∥1 ≤

(
∥(u⃗ − v⃗, A − ψ)∥1 + ∥(v⃗ − u⃗h, ψ − Ah)∥1

)
≤ C∥(u⃗ − v⃗, A − ψ)∥1 + C∥p − q∥0.
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Now, let v⃗ ∈ Wh be arbitrary and take w⃗ ∈ Wh to be a solution of

b(q, w⃗) = b(q, u⃗ − v⃗), ∀q ∈ Qh.

Since b satisfies an inf–sup condition and a continuity condition, then there exists a solution to this problem such that

∥w⃗∥1 ≤ C∥u⃗ − v⃗∥1,

and such that b(q, w⃗ + v⃗) = 0 for all q ∈ Qh. By the triangle inequality and using the result above, we then have

∥(u⃗ − u⃗h, A − Ah)∥1 ≤ C∥(u⃗ − (w⃗ + v⃗), A − ψ)∥1 + C∥p − q∥0

≤ C∥(u⃗ − v⃗, A − ψ)∥1 + C∥w⃗∥1 + C∥p − q∥0

≤ C∥(u⃗ − v⃗, A − ψ)∥1 + C∥p − q∥0. □

Remark 3.6. In Theorem 3.4, the constant dh may depend on Th or h. However, for problems with sufficiently smooth
solutions, such as the Hartmann flow problem in Section 5, it is reasonable to expect to bound dh independently of Th and h.

To give a more precise definition of our finite-element approximations, define, on an element K,

Pℓ(K) := the space of polynomials of degree ≤ ℓ,

and let C0(Ω̄) denote the standard space of continuous functions on Ω̄ . The finite-element spaces are defined as

Wh := {v⃗h ∈ C0(Ω̄) : v⃗h|K∈ (Pℓ+1)2, ∀K ∈ Th},

Qh := {qh ∈ C0(Ω̄) : qh|K∈ Pℓ, ∀K ∈ Th},

Xh := {ψh ∈ C0(Ω̄) : ψh|K∈ Pℓ+1, ∀K ∈ Th},

where ℓ ≥ 1. In what follows, we make standard approximation assumptions for generalized Taylor–Hood mixed finite-
elements on either triangular or quadrilateral elements in 2D [13, Proposition 8.2.2] as well as for the scalar space Xh.

Assumption 1. Let ℓ ≥ 1, s > 1. Assume that

inf
v⃗h∈Wh

∥u⃗ − v⃗h∥1 + inf
qh∈Qh

∥p − qh∥0 ≤ Chmin{s,ℓ+1}[
∥u∥s+1 + ∥p∥s

]
,

for all (u⃗, p) ∈ Hs+1(Ω)2 × Hs(Ω) and that

inf
ψh∈Xh

∥A − ψh∥1 ≤ Chmin{s,ℓ+1}
∥A∥s+1,

for all A ∈ Hs+1(Ω).

Corollary 3.1. Let (u⃗h, Ah) ∈ Wh × Xh be the finite-element approximation in Formulation 3. Under the assumptions of
Theorem 3.4 and Assumption 1, we have the error bound

∥(u⃗ − u⃗h, A − Ah)∥1 ≤ Chmin{s,ℓ+1}
[
∥u⃗∥s+1 + ∥p∥s + ∥A∥s+1

]
.

4. Newton’s method

Since theweak formulation in (18)–(20) is nonlinear, we use Newton’smethod to derive a linearized system. As expected,
the discrete form leads to a saddle-point problem [14,15]. Here, we focus on the linearization steps and show that the
resulting systems are well-posed.

4.1. Newton linearizations

Let S = W × X̃ with the norm ∥W∥
2
1 = ∥v⃗∥2

1 + ∥ψ∥
2
1 for all W = (v⃗, ψ) ∈ S. For convenience, we denote the solutions

of Formulations 2 and 3 as (U∗, p∗), (U∗

h , p
∗

h), respectively.
For U = (u⃗, A),W = (v⃗, ψ) ∈ S, define the following operators:

L1(u⃗, A, p)[v⃗] := a1(u⃗, v⃗) + b(p, v⃗) + c0(u⃗; u⃗, v⃗) + c̃1(A; v⃗, A) − ⟨f⃗ , v⃗⟩,
L2(u⃗, A, p)[ψ] := ã2(A, ψ) + c̃2(A; u⃗, ψ) + ⟨E0, ψ⟩,

L3(u⃗, A, p)[q] := −b(q, u⃗).

Problem (18)–(20) is equivalent to

L1(u⃗, A, p)[v⃗] = 0, ∀v⃗ ∈ W, (33)
L2(u⃗, A, p)[ψ] = 0, ∀ψ ∈ X̃, (34)
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L3(u⃗, A, p)[q] = 0, ∀q ∈ Q.

Since the variational system contains nonlinearities in both (33) and (34), we linearize the above forms. Let u⃗k, Ak, pk be the
current approximations for u⃗, A, p, respectively and δu⃗k = u⃗k+1 − u⃗k, δA = Ak+1 − Ak, δp = pk+1 − pk be the update to the
approximations, then the linear systems that arise within Newton’s method are denoted[

L1,u⃗ L1,A L1,p
L2,u⃗ L2,A 0
L3,u⃗ 0 0

][
δu⃗
δA
δp

]
= −

[
L1
L2
L3

]
,

where each of the system components is evaluated at u⃗k, Ak, pk. That is

L1,u⃗[v⃗] · δu⃗ =
∂

∂ u⃗
(L1(u⃗k, Ak, pk)[v⃗])[δu⃗] = a1(δu⃗, v⃗) + c0(u⃗k; δu⃗, v⃗) + c0(δu⃗; u⃗k, v⃗),

L1,A[v⃗] · δA =
∂

∂A
(L1(u⃗k, Ak, pk)[v⃗])[δA] = â(Ak; v⃗, δA),

L1,p[v⃗] · δp =
∂

∂p
(L1(u⃗k, Ak, pk)[v⃗])[δp] = b(δp, v⃗),

L2,u⃗[ψ] · δu⃗ =
∂

∂ u⃗
(L2(u⃗k, Ak, pk)[ψ])[δu⃗] = c̃2(Ak; δu⃗, ψ),

L2,A[ψ] · δA =
∂

∂A
(L2(u⃗k, Ak, pk)[ψ])[δA] = ã2(δA, ψ) + c̃2(δA; u⃗k, ψ),

L3,u⃗[q] · δu⃗ =
∂

∂ u⃗
(L3(u⃗k, Ak, pk)[q])[δu⃗] = b(q, δu⃗),

where

â(Ak; v⃗, A) :=

⟨(
∂Ak

∂y
·
∂A
∂y

−
∂Ak

∂x
·
∂A
∂x
,−

[
∂Ak

∂x
·
∂A
∂y

+
∂A
∂x

·
∂Ak

∂y

])
,
∂v⃗

∂x

⟩
0

+

⟨(
−

[
∂Ak

∂x
·
∂A
∂y

+
∂A
∂x

·
∂Ak

∂y

]
,
∂Ak

∂x
·
∂A
∂x

−
∂Ak

∂y
·
∂A
∂y

)
,
∂v⃗

∂y

⟩
0
.

Define the following forms:

A(Uk;U,W ) := â(Ak; v⃗, A) + a1(u⃗, v⃗) + ã2(A, ψ) + c0(u⃗k; u⃗, v⃗) + c0(u⃗; u⃗k, v⃗) + c̃2(Ak; u⃗, ψ) + c̃2(A; u⃗k, ψ),
B(W , q) := b(q, v⃗),

F (Uk, pk;W ) := L̃(v⃗, ψ) − Ã(u⃗k, Ak; v⃗, ψ) − C̃(u⃗k, Ak; u⃗k, Ak; v⃗, ψ) − B̃(pk; v⃗, ψ),
G(Uk; q) := −B(Uk, q).

For Newton’s method applied in a linearize-then-discretize formulation, we consider the finite-element spaces Sh =

Wh × Xh ⊂ S and Qh ⊂ Q. Given an approximation, (Uh,k, ph,k) ∈ Sh × Qh, the discrete Newton update is given by

Formulation 4. Find (δUh, δph) ∈ Sh × Qh such that

A(Uh,k; δUh,Wh) + B(Wh, δph) = F (Uh,k, ph,k;Wh), (35)

B(δUh, qh) = G(Uh,k; qh), (36)

for all (Wh, qh) ∈ Sh × Qh. Let Uh,k+1 = Uh,k + δUh, ph,k+1 = ph,k + δph.

For simplicity, throughout the remainder of this section, we drop the subscript h. Since we consider finite-element
approximations u⃗k and Ak, we denote Csup = sup(x,y)∈Ω |∇u⃗k|,Dsup = sup(x,y)∈Ω |∇Ak|, and Msup = sup(x,y)∈Ω |u⃗k|, and note
that they are all finite quantities.

Remark 4.1. Assuming Newton’s method is convergent, the approximation on Th converges to the true discrete solution as
k → ∞, so these constants, Csup,Dsup, and Msup, stay well-behaved under assumptions on the solution.

Lemma 4.1. A(Uk;U,W ) andB(W , q) are continuous on Sh and Qh for the norms ∥ · ∥1 and ∥ · ∥0.

Proof. For the continuity of A(Uk;U,W ), observe that

|A(Uk;U,W )| ≤ |â(Ak; v⃗, A) + a1(u⃗, v⃗) + ã2(A, ψ) + c0(u⃗k; u⃗, v⃗) + c0(u⃗; u⃗k, v⃗) + c̃2(Ak; u⃗, ψ) + c̃2(A; u⃗k, ψ)|.

Next, consider the above summands separately. First, note that

|â(Ak; v⃗, A)| ≤ 2Dsup∥∇A∥0∥∇v⃗∥0.
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Recalling the definitions of the rest of these terms, we obtain the following estimates

|a1(u⃗, v⃗)| ≤ CR−1
e ∥u⃗∥1∥v⃗∥1,

|̃a2(A, ψ)| ≤ Re−1
m ∥A∥1∥ψ∥1,

|c0(u⃗k; u⃗, v⃗)| ≤
Msup

2

(
∥|∇u⃗∥0∥v⃗∥0 + ∥u⃗∥0∥∇v⃗∥0

)
,

|c0(u⃗; u⃗k, v⃗)| ≤
1
2

(
Csup∥u⃗∥0∥v⃗∥0 + Msup∥u⃗∥0∥∇v⃗∥0

)
,

|̃c2(Ak; u⃗, ψ)| ≤ Dsup∥u⃗∥0∥ψ∥0,

|̃c2(A; u⃗k, ψ)| ≤ Msup∥∇A∥0∥ψ∥0.

An application of the Cauchy–Schwarz inequality shows that

|A(Uk;U,W )| ≤ C∥U∥1∥W∥1,

where C is a constant depending on Csup, Dsup,Msup, Re and Rem.
Continuity ofB(W , q) holds by standard arguments. □

Lemma 4.2. F (Uk, pk;W ) and G(Uk; q) are bounded linear functionals on Sh and Qh, respectively.

Proof. The components of F (Uk, pk;W ) can be bounded as in the proof of Lemma 4.1. Since, additionally,

|⟨E0, ψ⟩0| ≤ ∥E0
∥0∥ψ∥0,

|⟨f⃗ , v⃗⟩| ≤ ∥f⃗ ∥−1∥v⃗∥1,

and b(q, v⃗) is continuous, we have

|F (Uk, pk;W )| ≤ C∥W∥1,

where C is a constant only depending on the norms of Uk and pk.
By Hölder’s inequality, we have

|G(Uk; q)| = |−B(Uk, q)| ≤ ∥Uk∥1∥q∥0,

implying that G(Uk; q) is bounded. □

To illustrate the existence and uniqueness of solutions to the system given by (35) and (36), we now give conditions
under which A(Uk;U,W ) is a coercive and continuous bilinear form. When B(W , q) is continuous and weakly coercive in
the chosen finite-element spaces, existence and uniqueness of solutions to the discretizedNewton linearization is automatic.

Theorem 4.1. Let Re and Rem be small enough such that

min
{
α1Re−1, α2Re−1

m

}
−

2Csup + 6Dsup + 5Msup

4
> 0,

where α1, α2 are constants defined below, and Csup, Dsup, and Msup are as given above. Then, there exists a constant γ > 0
depending on Uk andΩ such that

A(Uk;W ,W ) ≥ γ ∥W∥
2
1, ∀W ∈ Sh. (37)

Proof. By standard arguments,

⟨∇v⃗ + ∇v⃗T ,∇v⃗⟩0 ≥ α1∥v⃗∥
2
1, ∀v⃗ ∈ Wh,

where α1 is a constant depending only onΩ (see [6], Corollary 11.2.22) and

⟨∇ψ,∇ψ⟩0 ≥ α2∥ψ∥
2
1, ∀ψ ∈ Xh,

where α2 depends only onΩ (see the Poincaré inequality [6]).
The remaining terms in A(Uk;W ,W ) can be bounded as in the proof of Lemma 4.1, giving

A(Uk;W ,W ) ≥ α1Re−1
∥v⃗∥2

1 + α2Re−1
m ∥ψ∥

2
1 − 2Dsup∥∇ψ∥0∥∇v⃗∥0

−Msup∥v⃗∥0∥∇v⃗∥0 −
Csup

2
∥v⃗∥2

0 −
Msup

2
∥v⃗∥0∥∇v⃗∥0 − Dsup∥v⃗∥0∥ψ∥0 − Msup∥∇ψ∥0∥ψ∥0

≥ min{α1Re−1, α2Re−1
m }∥W∥

2
1 −

2Csup + 6Dsup + 5Msup

4
∥W∥

2
1

= (γ1 − γ2)∥W∥
2
1,

where γ1 = min{α1Re−1, α2Re−1
m }, γ2 = (2Csup + 6Dsup + 5Msup)/4. Let γ = γ1 − γ2 > 0. Thus, A(Uk;W ,W ) is coercive. □
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Remark 4.2. Since the Poincaré inequality applies for ψ ∈ X̃0, the coercivity bound will also hold for the appropriate
finite-element space in the case of perfect conductor boundary conditions.

Assumption 2. There exists a constant Γs > 0 depending onΩ such that

inf
0̸=q∈Qh

sup
0̸⃗=v⃗∈Wh

b(q, v⃗)
∥v⃗∥1∥q∥0

≥ Γs > 0. (38)

Remark 4.3. The major difference between (23) and (38) is that the inf–sup condition must be satisfied on the discrete
space. There is, however, no restriction on the discrete space chosen to approximate A. Choosing a pair of spaces for which
the discrete inf–sup condition (38) holds is well-known to be a delicate matter, and seemingly natural choices of velocity
and pressure approximation do not always work [16]. For example, the simplest globally continuous approximations, using
linear or bilinear elements for both velocity and pressure on triangles or quadrilaterals, respectively (the so-called P1−P1 and
Q1 − Q1 approximations), are unstable. In general, care must be taken to make the velocity space rich enough compared to
the pressure space, otherwise the discrete solutionwill be ‘‘over-constrained’’. Any stable element pair for the Navier–Stokes
equations (e.g., P2 − P1 or Q2 − Q1 Taylor–Hood elements) can be used for u⃗ and p (see [9,13,16,17]) to satisfy (38).

Theorem 4.2. Under the assumptions of Theorem 4.1 and Assumption 2, there is a unique solution to Formulation 4.

Proof. Following Theorem 1.2 of [9, Chapter III], Lemmas 4.1 and 4.2, and Theorem 4.1 prove the result. □

4.2. Solvability of stabilized discretizations

In this subsection, we give a solvability condition for stabilized finite-element methods, since our analysis is also suitable
for this setting. From Formulation 4, thematrix equations that result from a stabilized finite-element discretization have the
following block form:

Mx =

⎡⎣K Z B
Y D 0
BT 0 −T

⎤⎦[xu⃗xA
xp

]
=

[
fu⃗
fA
fp

]
, (39)

where xu⃗, xA, and xp are the discrete Newton corrections for u⃗, A, and p, respectively, and fu⃗, fA, and fp are the corresponding
blocks of the residual, while T is the stabilization term.

Let

K̂ =

[
K Z
Y D

]
, B̂ =

[
B
0

]
, x ˆ⃗u =

[
xu⃗
xA

]
, f ˆ⃗u =

[
fu⃗
fA

]
.

Then, Eq. (39) can be rewritten as

Mx =

[
K̂ B̂
B̂T

−T

][
x ˆ⃗u
xp

]
=

[
f ˆ⃗u
fp

]
, (40)

where K̂ ∈ Rn×n, B̂ ∈ Rn×m, f ˆ⃗u ∈ Rn, fp ∈ Rm and m ≤ n.

Lemma 4.3. Under the assumptions of Theorem 4.1, K̂ is positive definite.

Proof. This is a consequence of (37). □

With homogeneous Dirichlet boundary conditions on v⃗ ∈ W, b(p, v⃗) = 0 for all v⃗ ∈ W implies that the pressure, p, is
a constant. When using a nodal finite-element basis, Span{1⃗} ⊂ Ker(B) is a natural consequence of this. If the two spaces
are equal, the resulting pressure is unique up to constants. When a discrete inf–sup condition (as in (38)) does not hold,
Ker(B) ̸= Span{1⃗}. However, we have the following condition that guarantees the solvability of the stabilized method, and
gives insight into the construction of T .

Theorem 4.3. Under the assumptions of Theorem 4.1, let S = −(T + B̂T K̂−1B̂) be the Schur complement of K̂ in M, with T
symmetric and positive semidefinite. If Ker(T ) ∩ Ker(B) ⊆ Span{1⃗}, then Ker(S) ⊆ Span{1⃗}.

Proof. Since K̂ is positive definite, K̂−1 is also positive definite. This implies that pT B̂T K̂−1B̂p ≥ 0 with equality if and only if
Bp = 0. On the other hand, because T is symmetric positive semidefinite, Ker(S) = Ker(T ) ∩ Ker(B). □

This theorem tells us that (40) is well-posed if the stabilized pressure Schur Complement, S, is a positive semi-definite
matrix with the following stability condition:

Ker(S) ⊆ Span{1⃗}.
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The important consequence of Theorem 4.3 is that any stabilization approach that is suitable for the Stokes equations is
also suitable in this context, since K̂ does not enter the intersecting kernels condition. In particular, standard approaches for
equal-order Q1 − Q1 approximations of velocity and pressure can be used, including diffusion stabilization and pressure-
projection [16,18]. Thus, the analysis above can be applied to discretization approaches similar to those in [5], which uses
diffusion-type stabilization of the pressure equation (although we note that [5] also makes use of additional stabilization for
the case when the Reynolds numbers are not small, which is not considered here). Based on the above discussions, we give
the natural result.

Theorem 4.4. Under the assumptions of Theorem 4.3, the stabilized discrete Newton approximation of Formulation 3 yields a
unique solution with a pressure that is unique up to constants.

We note here that, for both the stable and stabilized cases, the assumptions of Theorem 4.1 could be relaxed with the use
of appropriate stabilized finite-elements for the convection–diffusion parts of the weak form, as was done in [5]. The general
conclusions of Theorems 4.2 and 4.4 would naturally still hold in this case, notably that any standard mixed finite-element
space for Stokes or Navier–Stokes can be used for the velocity and pressures, and an independent choice can bemade for the
potential, A.

4.3. Solvability of Newton Linearizations

Finally, under much more restrictive assumptions, we show that the Newton linearizations are always solvable in a
neighbourhood of a discrete solution, by proving coercivity of A(U;W ,W ). While this is not sufficient to guarantee that
Newton’smethod converges to the solution, it strongly suggests such a result, given the usual expectation of locally quadratic
convergence of Newton’s method.

Define ∥U∥1,∞ := max{∥u⃗∥1,∞, ∥A∥1,∞} and D(U; r) = {W : ∥W − U∥1 < r} and assume the following.

Assumption 3. Assume the conditions of Corollary 3.1 hold; furthermore, assume the solution U∗

h of Formulation 3 satisfies

κ∗

h = ∥U∗

h ∥1,∞ <
γ1

4
,

where γ1 = min{α1Re−1, α2Re−1
m } is from Theorem 4.1.

Theorem 4.5. There exists r > 0 such that A(U;W ,W ) is always coercive for any U ∈ D(U∗

h ; r).

Proof. Recalling constants γ1, γ2 from the proof of Theorem 4.1,

γ2 = (2Csup + 6Dsup + 5Msup)/4 < 4 · max{Csup,Dsup,Msup} < 4∥Uk∥1,∞,

gives

A(Uk;W ,W ) > (γ1 − 4∥Uk∥1,∞)∥W∥
2
1.

Thus, if ∥Uk∥1,∞ <
γ1
4 , then A(Uk;W ,W ) is coercive.

According to the standard inverse inequality [6, Theorem IV.5.11],

∥U∗

h ∥1,∞ ≤ C∗h−1
∥U∗

h ∥1,

where C∗ is a constant. By the triangle inequality, for any r and W ∈ D(U∗

h ; r) ∩ Sh, we have

∥U∥1,∞ ≤ ∥U∗

h ∥1,∞ + ∥U − U∗

h ∥1,∞

≤ κ∗

h + C∗h−1
∥U − U∗

h ∥1

≤ κ∗

h + C∗h−1r.

Taking r =
h(γ1/4−κ∗

h )
C∗ , A(U;W ,W ) is, thus, coercive if U ∈ D(U∗

h ; r). □

5. Numerical results

To demonstrate both the finite-element convergence and performance of Newton’s method for this formulation, we
consider the Hartmann flow test problem on the domain

[
−

1
2 ,

1
2

]2
. For this problem, we have an analytical solution, given

by u⃗ = (u1, 0) and B⃗ = (B1, B2) with

u1(x, y) =
1

2 tanh(Ha/2)

√
Re
Rem

(
1 −

cosh(yHa)
cosh(Ha/2)

)
,

B1(x, y) =
sinh(yHa)

2 sinh(Ha/2)
− y,
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Fig. 2. H1 approximation error,
(
∥u⃗ − u⃗h∥

2
1 + ∥A − Ah∥

2
1

)1/2 , for finite-element solution of Hartmann test problem on uniform quadrilateral meshes with
meshwidth h. At left, error for approximation with velocities and potential in Q2 and pressure in Q1 , at right, error for approximation with velocities and
potential in Q3 and pressure in Q2 .

B2(x, y) = 1,

p(x, y) = −x −
1
2
(B1(x, y))2 ,

where the Hartmann number is given by Ha =
√
ReRem. Increasing Ha leads to increased coupling between the velocity

and magnetic field components of the solution, which is seen in [4] to lead to difficulties with some preconditioners
for the discretized and linearized equations. In the numerical results that follow, we fix Re = Rem = Ha. From this
expression, we compute A(x, y) such that B1(x, y) =

∂A
∂y and B2(x, y) = −

∂A
∂x . For this solution, we have non-homogeneous

conductor boundary conditions on B⃗, which we implement with suitable non-homogeneous Dirichlet boundary conditions
on A(x, y).

Fig. 2 shows finite-element convergence for this problemwith varying Ha andmesh-size h. We solve the problem using a
linearize-then-discretize formulation, starting from an initial guess that matches the non-homogeneous Dirichlet boundary
conditions, but is zero for all variables inside the domain. The discretization is done in deal.II [19,20], with each linearization
solved using a direct solver (UMFPACK [21]), and the nonlinear iteration stopped when the vector ℓ2-norm, scaled by the
mesh-size h, of the nonlinear residual or that of theNewtonupdate is less than 10−8. These results are presented in the setting
of Corollary 3.1, using (generalized) Taylor–Hood elements for the velocity and pressure, and matching the degree of the
velocity space for the potential. The numerical results presented here agree quite well with Corollary 3.1, with O(h2) errors
observed for approximation of velocities and potential in Q2 and pressure in Q1 andO(h3) errors observed for approximation
with velocities and potential in Q3 and pressure in Q2. For the range of Hartmann numbers considered in these figures, no
difficulties are seen with convergence either of the nonlinear iteration or the finite-element approximations; convergence
is seen within 4 to 7 Newton steps for all Hartmann numbers and all meshes. For larger Hartmann numbers, we did observe
convergence issues with Newton’s method.

6. Conclusions

In this paper, we present a theoretical analysis of the weak formulations of a steady-state visco-resistive vector-potential
MHD formulation. Under certain conditions, we prove the uniqueness and existence of the solutions. Furthermore, we show
that the solutions of the curled and uncurled formulations are the same, under some conditions. From this point of view,
using the uncurled formulation to approximate the MHD problem is reasonable and meaningful. A mixed finite-element
approximation of the uncurled formulation is discussed. The convergence rates obtained under some standard smoothness
assumptions have been analysed, and we show that it is a suitable option. Thus, using Newton stepping and a stable Stokes
finite-element method pair plus any space for A yields a suitable solution scheme for two-dimensional MHD.
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