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a b s t r a c t

In this paper, we derive an a posteriori error estimator for the weak Galerkin least-
squares (WG-LS) method applied to the reaction–diffusion equation. We show that this
estimator is both reliable and efficient, allowing it to be used for adaptive refinement.
Due to the flexibility of the WG-LS discretization, we are able to design a simple and
straightforward refinement scheme that is applicable to any shape regular polygonalmesh.
Finally, we present numerical experiments that confirm the effectiveness of the estimator,
and demonstrate the robustness and efficiency of the proposed adaptive WG-LS approach.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The weak Galerkin (WG) method [1–3] takes a system of equations (usually first-order partial differential equations
(PDEs)) and approximates the differential operators by a weakly-defined derivative in the distribution sense. A WG
formulation is derived by replacing the usual derivatives with these weak ones and, as a result, allows for a variety of
problems to be solved on general and non-conforming meshes. WG methods provide robust and stable discretizations for
various problems, including Stokes’ equations [4,5], the Brinkman equations [6], locking-free schemes for linear elasticity [7],
and poroelasticity [8], to name a few. Recently, in [9], a least-squares version of the WG method was developed, which
uses discontinuous approximating functions on mixed finite-element partitions consisting of arbitrary polygon/polyhedron
shapes.

The first-order system least-squares finite-element approach [10,11], on the other hand, takes a system of first-order
PDEs andminimizes the residuals in a least-squares sense to obtain their weak formulations. Advantages of the least-squares
finite-element method are that the resulting linear systems are symmetric and positive definite and, thus, iterative solution
techniques such as multigrid have successfully been applied to solve them (e.g. [12,10,11,13–21]). Another advantage of the
least-squares approach is the natural sharp and reliable a posterior error estimate that arises. To illustrate this, consider a
first-order system of (linear) PDEs,

Lu⃗ = f⃗ ,
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and define the least-squares functional,

G(u⃗; f⃗ ) = ∥Lu⃗ − f⃗ ∥.

In order to showwell-posedness, this functional is proven to be elliptic with respect to the functional space of interest (most
often H1),

c0∥u⃗∥V ≤ G(u⃗; 0⃗) ≤ c1∥u⃗∥V ∀ u⃗ ∈ V,

including at the discrete level. As a result, the functional itself is the a posteriori error estimator and can be utilized in an
adaptive refinement scheme.

Adaptive refinement schemes have been used extensively to approximate solutions of PDEs containing local features
[22–28]. The approach is simple,

SOLVE → ESTIMATE → MARK → REFINE, (1)

where the a posteriori error estimate is used toEstimate the error in the solution. Then, a certain percentage of the elements
that contain thehighest amount of approximate error areMarked for refinement. Other approaches canbeused that optimize
the marking portion of the algorithm taking into account both the sharpness and reliability of the estimator [29].

While the WG least-squares (WG-LS) approach can increase the flexibility of a least-squares method by making it
applicable to a wide range of PDEs that are discretized on non-conforming or non-standard meshes, the natural a posteriori
error estimator might be lost, since the discretization is no longer a direct result of a minimization problem. However, the
goal of this paper is to show that such an a posteriori error estimator is obtained, allowing us to design an adaptive WG-LS
method.

Consider the model problem satisfying

−∇ · (A∇u) + cu = f , in Ω, (2)
u = g, on ∂Ω, (3)

where c ≥ 0 is a function onΩ , which is a polytopal domain inRd (polygonal or polyhedral domain for d = 2,3),∇u denotes
the gradient of the function u, and the tensor A is uniformly symmetric positive-definite. This PDE (2)–(3) has awide range of
applications. For example, Darcy’s Lawmodels the flow and transport in porous media, and A is then the permeability of the
medium. The solution of themodel problem (2) and (3)may have large derivatives or singularities due to the diffusion tensor
A, the domain Ω , and/or the right-hand side f , which makes it difficult to approximate using uniformmeshes. An extremely
small global mesh size is usually required in order to resolve the local singularities and, hence, standard finite-element
methods cannot achieve optimal convergence on these meshes. On the other hand, adaptive schemes refine locally near the
singularities allowing for more efficiency of the overall method.

In [30], a reliable and efficient a posteriori error estimate for the standard WG finite-element method applied to the
model problem (2) and (3) was derived based on a residual-type a posteriori error estimator. In this work, we propose a
similar but different a posteriori error estimator for the WG-LS problem applied to (2)–(3), and prove that it gives both a
lower and an upper bound on the true errors. This implies that the error estimator is reliable and efficient. Then, we design
an adaptive WG-LS algorithm based on the a posteriori error estimator. Due to the nature of WG, this adaptive algorithm
works on general polygonal meshes and, thus, adaptive refinement is done in a straightforward way. We note that adaptive
algorithms on polygonal meshes can also be done based on discontinuous Galerkin finite-element methods, see [31]. Using
our approach with a WG scheme, in comparison however, there is no need for the handling of hanging nodes.

This paper is organized as follows. In Section 2, we give a brief background on the WG-LS approach applied to the model
problem above. In Section 3, we define and prove the a posteriori error estimate for the model problem, and then use this to
describe an adaptive algorithmbased onWG-LS in Section 4.We give several examples showing the performance of adaptive
refinement with the WG-LS approach in Section 5 and, finally, a brief discussion of the results is given in Section 6.

2. The Weak Galerkin Least-Squares method

First, we recall the WG-LS method developed in [9] for solving the model problem (2)–(3). The WG-LS method follows
the WG principles, but applies a least-squares finite-element approach to the first-order mixed form of (2)–(3):

q + A∇u = 0, in Ω (4)

∇ · q + cu = f , in Ω (5)

u = g, on ∂Ω. (6)

Let Th be a partition of a domainΩ consisting of polygons in two dimensions or polyhedra in three dimensions, satisfying
a set of conditions specified in [3]. Denote by Eh the set of all edges or flat faces in Th, and let E0

h = Eh\∂Ω be the set of
all interior edges or flat faces. Let Γh be the subset of Eh of all edges on Γ . For every element T ∈ Th, we denote by hT its
diameter and mesh size h = maxT∈Th hT for Th. For convenience, we introduce a set of normal directions on Eh as follows,

Dh = {ne : ne is unit and normal to e, e ∈ Eh}. (7)
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Next, we introduce two WG finite-element spaces, Vh and Σh, for u and q, respectively,

Vh = {v = {v0, vb} : v0|T∈ Pk+1(T ), vb|∂T∈ Pk+1(∂T )}

Σh = {σ = {σ0, σb} : σ0|T∈ [Pk(T )]d, σb|e= σbne, σb|e∈ Pk(e), e ∈ ∂T }.

In addition, we define V 0
h ⊂ Vh as V 0

h = {v ∈ Vh : vb = 0 on ∂Ω}. For σ = {σ0, σb} ∈ Σh, theweak divergence∇w ·σ ∈ Pk(T )
is defined on each element T ,

(∇w · σ, v)T = −(σ0, ∇v)T + ⟨σb · n, v⟩∂T , ∀v ∈ Pk(T ). (8)

where (·, ·)T denotes the L2 inner product defined on element T and ⟨·, ·⟩ denotes the duality pair defined on ∂T . For
v = {v0, vb} ∈ Vh, the weak gradient ∇wv ∈ [Pk(T )]d is defined on each element T by

(∇wv, τ )T = −(v0, ∇ · τ )T + ⟨vb, τ · n⟩∂T , ∀τ ∈ [Pk(T )]d. (9)

With these definitions, then, the WG-LS scheme, for the model problem (2)–(3), seeks uh = {u0, ub} ∈ Vh and
qh = {q0, qb} ∈ Σh, such that ub = Qbg (the L2 projection from L2(e) to Pk+1(e) of g on ∂Ω) and,

a(uh, qh; v, σ) = (f , ∇w · σ + cv0) ∀(v, σ) ∈ V 0
h × Σh. (10)

Here, a(w, τ; v, σ) =
∑

T∈Th
aT (w, τ; v, σ) with

aT (w, τ; v, σ) = (∇w · τ + cw0, ∇w · σ + cv0)T
+ (τ0 + A∇ww, σ0 + A∇wv)T + s1,T (w, v) + s2,T (τ, σ),

s1,T (w, v) = h−1
T ⟨w0 − wb, v0 − vb⟩∂T ,

s2,T (τ, σ) = hT ⟨(τ0 − τb) · n, (σ0 − σb) · n⟩∂T .

Optimal error estimates for the WG-LS scheme (10) are then derived, considering the following norms in Vh and Σh,
respectively,

|||v|||
2
V =

∑
T∈Th

∥∇wv∥
2
T + s1(v, v), |||σ|||

2
Σ =

∑
T∈Th

∥∇w · σ∥
2
T + ∥σ0∥

2
+ s2(σ, σ),

where ∥v∥
2
T := ∥(v, v)T∥ and ∥v∥

2
:= (v, v), (v, v) is the L2 inner product defined on Ω . The following theorem summarizes

the results. For more details on the method, we refer the reader to [9].

Theorem 1 ([9]). First, define Qhu = {Q0u,Qbu} ∈ Vh with Q0 and Qb being the L2 projections from L2(T ) to Pk+1(T ) and from
L2(e) to Pk+1(e), respectively. Then, define Qhq = {Q0q, (Qbq · ne)ne} ∈ Σh with Q0 and Qb being the L2 projections from
[L2(T )]d to [Pk(T )]d and from [L2(e)]d to [Pk(e)]d, respectively. Let (uh, qh) ∈ Vh × Σh be the WG-LS finite-element solution of the
problem (4)–(6) arising from (10). Assume the exact solution u ∈ Hk+2(Ω) and q ∈ [Hk+1(Ω)]d, then there exists a constant C
such that

|||uh − Qhu|||V + |||qh − Qhq|||Σ ≤ Chk+1(∥u∥k+2 + ∥q∥k+1). (11)

The error estimate, (11), gives an a priori error estimate for the WG-LS scheme (10). Note that such an estimate only
holds when the solution is sufficiently smooth (u ∈ Hk+2(Ω)) and, therefore, cannot be applied for problems with singular
solutions. In this paper, we derive a residual-type a posteriori error estimate for (10)without assuming such high smoothness
on the solution.

3. A posteriori error estimate

Letuh = {u0, ub} andqh = {q0, qb}be the solution of theWG-LS scheme (10) for themodel problem (4)–(6). For simplicity,
assume that the coefficient A is the identity and that the function c is bounded away from zero, c ≥ ξ > 0, for some
constant, ξ . The analysis below can easily be extended to more general cases of coefficients with simple and straightforward
modifications.

We obtain an a posteriori error estimator by using a residual-based approach. On each T ∈ Th, define a local estimator,
ηT ,

η2
T = ∥∇w · qh + cu0 − f ∥2

T + ∥q0 + ∇wuh∥
2
T + s1,T (uh, uh) + s2,T (qh, qh). (12)

Note that the first two terms correspond to the residuals of (10) on T and the last two terms are the stabilization termswhich
appear in (10). Based on ηT , we define a global a posteriori error estimator, η, as follows:

η2
=

∑
T∈Th

η2
T . (13)

In the rest of this section, we show that the error estimator defined above is both efficient and reliable, i.e., it provides both
lower and upper bounds for the true error.
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For the sake of simplicity, we introduce the following notation for measuring the true errors,

∥u − uh∥
2
h =

∑
T∈Th

∥u − uh∥
2
h,T and ∥q − qh∥

2
h =

∑
T∈Th

∥q − qh∥
2
h,T ,

where

∥u − uh∥
2
h,T = ∥∇u − ∇wuh∥

2
T + ∥u − u0∥

2
T + s1,T (uh, uh),

∥q − qh∥
2
h,T = ∥q − q0∥

2
T + ∥∇ · q − ∇w · q∥

2
T + s2,T (qh, qh).

In addition, the following trace inequality (see [3] for details) plays an important role in the analysis. For any function
ϕ ∈ H1(T ),

∥ϕ∥
2
e ≤ C

(
h−1
T ∥ϕ∥

2
T + hT∥∇ϕ∥

2
T

)
, (14)

where ∥v∥
2
e := (v, v)e with (·, ·)e being the L2 inner product defined on edge e.

Before proving the efficiency and reliability of the a posterior error estimator, we introduce a few lemmas to help with
the analysis. The first relates the errors in the standard derivatives to the errors in the weak derivatives.

Lemma 3.1. Let (u, q) and (uh, qh) be the solutions of (4)–(6) and (10) respectively, then

∥∇u − ∇u0∥T ≤ ∥∇u − ∇wuh∥T + s1,T (uh, uh)
1
2 , (15)

∥∇ · q − ∇ · q0∥T ≤ ∥∇ · q − ∇w · qh∥T + s2,T (qh, qh)
1
2 . (16)

Proof. By the triangle inequality,

∥∇u − ∇u0∥T ≤ ∥∇u − ∇wuh∥T + ∥∇wuh − ∇u0∥T . (17)

Then, the second term expands to

∥∇wuh − ∇u0∥
2
T = (∇wuh, ∇wuh)T − 2(∇wuh, ∇u0)T + (∇u0, ∇u0)T . (18)

Using the definition of the weak gradient, (9),

(∇wuh, ∇wuh)T = −(u0, ∇ · ∇wuh)T + ⟨ub, ∇wuh · n⟩∂T

= (∇u0, ∇wuh)T − ⟨u0 − ub, ∇wuh · n⟩∂T ,

and

(∇u0, ∇u0)T = −(u0, ∇ · ∇u0)T + ⟨u0, ∇u0 · n⟩∂T

= (∇u0, ∇wuh)T + ⟨u0 − ub, ∇u0 · n⟩∂T .

Substituting the two equations above back into (18) and using (14) and the inverse inequality,

∥∇wuh − ∇u0∥
2
T = ⟨u0 − ub, (∇u0 − ∇wuh) · n⟩∂T ≤ s1,T (uh, uh)

1
2 ∥∇wuh − ∇u0∥T ,

which implies ∥∇wuh − ∇u0∥T ≤ s1,T (uh, uh)1/2. Together with (17), (15) follows directly. Inequality (16) can be derived in
the same fashion. □

Lemma 3.2. Let u and q be the solution of (4)–(6) and uh = {u0, ub} and qh = {q0, qb} be the solutions of (10). Then, the
following equality holds,∑

T∈Th

(q − q0, ∇u − ∇wuh)T =

∑
T∈Th

((∇w · qh + cu0 − f , u − u0)T

+c(u − u0, u − u0)T )
+ ℓ1(u, qh) − ℓ2(uh, q) − ℓ3(uh, qh), (19)

where

ℓ1(u, qh) =

∑
T∈Th

⟨Q0u − u, (q0 − qb) · n⟩∂T ,

ℓ2(uh, q) =

∑
T∈Th

⟨u0 − ub, (q − Q0q) · n⟩∂T ,

ℓ3(uh, qh) =

∑
T∈Th

⟨u0 − ub, (q0 − qb) · n⟩∂T .
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Proof. On each element T ,

(q − q0, ∇u − ∇wuh)T = (q − q0, ∇u)T − (q − q0, ∇wuh)T . (20)

Using integration by parts and (8),

(∇ · q0,Q0u)T = −(q0, ∇Q0u)T + ⟨Q0u, q0 · n⟩∂T

= (∇w · qh, u)T + ⟨Q0u, (q0 − qb) · n⟩∂T . (21)

Then, using integration by parts, (21), and the fact that∑
T∈Th

⟨u, qb · n⟩∂T =

∑
T∈Th

⟨u, q · n⟩∂T = 0,

∑
T∈Th

(q − q0, ∇u)T =

∑
T∈Th

(−(∇ · (q − q0), u)T + ⟨u, (q − q0) · n⟩∂T )

=

∑
T∈Th

(−(∇ · q, u)T + (∇ · q0, u)T + ⟨u, (qb − q0) · n⟩∂T )

= −

∑
T∈Th

(∇ · q − ∇w · qh, u)T + ℓ1(u, qh). (22)

Next, using (9), (8), and integration by parts,

(Q0q, ∇wuh)T = −(u0, ∇ · Q0q)T + ⟨ub,Q0q · n⟩∂T

= (∇u0, q)T − ⟨u0 − ub,Q0q · n⟩∂T

= −(∇ · q, u0)T + ⟨u0 − ub, (q − Q0q) · n⟩∂T , (23)

and

(q0, ∇wuh)T = −(u0, ∇ · q0)T + ⟨ub, q0 · n⟩∂T

= (∇u0, q0)T − ⟨u0 − ub, q0 · n⟩∂T

= −(∇w · qh, u0)T − ⟨u0 − ub, (q0 − qb) · n⟩∂T . (24)

Combining (23) and (24), we get∑
T∈Th

(q − q0, ∇wuh)T =

∑
T∈Th

((q, ∇wuh)T − (q0, ∇wuh)T )

= −

∑
T∈Th

(∇ · q − ∇w · qh, u0)T + ℓ2(uh, q) + ℓ3(uh, qh). (25)

Finally, substituting (22) and (25) back into (20), we arrive at,∑
T∈Th

(q − q0, ∇u − ∇wuh)T =

∑
T∈Th

((q − q0, ∇u)T − (q − q0, ∇wuh)T )

= −

∑
T∈Th

(∇ · q − ∇w · qh, u − u0)T + ℓ1(u, qh)

− ℓ2(uh, q) − ℓ3(uh, qh). (26)

Then, (19) is obtained directly from (5), which completes the proof. □

Lemma 3.3. Let (u, q) and (uh, qh) be the solutions of (4)–(6) and (10), respectively. For 0 < ϵ < 1, there exists constant C such
that,

|ℓ1(u, qh)| ≤ Cϵ−1η2
+ ϵ

∑
T∈Th

∥∇u − ∇wuh∥
2
T , (27)

|ℓ2(uh, q)| ≤ Cϵ−1η2
+ ϵ

∑
T∈Th

(
∥q − q0∥

2
T + ∥(∇ · q − ∇w · qh)∥2

T

)
, (28)

|ℓ3(uh, qh)| ≤ Cη2. (29)
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Proof. By the trace inequality (14), (15), and the Cauchy–Schwarz inequality, (27) is derived as follows,

|ℓ1(u, qh)| = |

∑
T∈Th

⟨Q0(u − u0) + u0 − u, (q0 − qb) · n⟩∂T |

≤

∑
T∈Th

(
h−1

∥Q0(u − u0) − (u − u0)∥2
T + h|∇Q0(u − u0) − (u − u0)|2T

)1/2
s2,T (qh, qh)1/2

≤ C
∑
T∈Th

∥∇(u − u0)∥T s2,T (qh, qh)
1
2

≤ C
∑
T∈Th

(
∥∇u − ∇wuh∥

2
T + s1,T (uh, uh)

)
s2,T (qh, qh)

1
2

≤ Cϵ−1η2
+ ϵ

∑
T∈Th

∥∇u − ∇wuh∥
2
T .

Considering ℓ2, note that,

|ℓ2(uh, q)| = |

∑
T∈Th

⟨u0 − ub, (q − q0 + q0 − Q0q) · n⟩∂T |

≤

∑
T∈Th

|⟨u0 − ub, (q − q0) · n⟩∂T | + |⟨u0 − ub,Q0(q − q0) · n⟩∂T |. (30)

Using the Cauchy–Schwarz inequality, the inverse inequality, and the trace inequality, we estimate the two terms on the
left-hand side as follows,

|⟨u0 − ub, (q − q0) · n⟩∂T | ≤ ∥u0 − ub∥
H

1
2 (∂T )

∥(q − q0) · n∥
H−

1
2 (∂T )

≤ Cs1,T (uh, uh)
1
2
(
∥q − q0∥

2
T + ∥∇ · (q − q0)∥2

T

) 1
2 ,

and

|⟨u0 − ub,Q0(q − q0) · n⟩∂T | ≤ h
−

1
2

T ∥u0 − ub∥∂T hT∥Q0(q − q0) · n∥∂T

≤ s1,T (uh, uh)
1
2 hT∥Q0(q − q0)∥∂T

≤ Cs1,T (uh, uh)
1
2 ∥Q0(q − q0)∥T

≤ Cs1,T (uh, uh)
1
2 ∥q − q0∥T .

Then, substituting the above two inequalities back into (30), we obtain,

|ℓ2(uh, q)| ≤ C
∑
T∈Th

(
∥q − q0∥

2
T + ∥∇ · (q − q0)∥2

T

) 1
2 s1,T (uh, uh)

1
2

≤ Cϵ−1η2
+ ϵ

∑
T∈Th

(∥q − q0∥
2
T + ∥(∇ · q − ∇w · qh)∥2

T ).

Finally, ℓ3 is bounded as follows,

|ℓ3(uh, qh)| ≤

∑
T∈Th

|⟨u0 − ub, (q0 − qb) · n⟩T |

≤

∑
T∈Th

s1,T (uh, uh)
1
2 s2,T (qh, qh)

1
2 ≤ η2. □

Now we are ready to present the main results of the paper. First, we show that the a posteriori error estimator, (12), is
reliable.

Theorem 2. Let u and q be the solution of (4)–(6) and uh = {u0, ub} and qh = {q0, qb} be the WG-LS solution of (10). There
exists a positive constant C such that,

∥u − uh∥
2
h + ∥q − qh∥

2
h ≤ C

∑
T∈Th

η2
T = Cη2. (31)
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Proof. Using (19) and (4), we have∑
T∈Th

∥∇u − ∇wuh∥
2
T =

∑
T∈Th

[(∇u − ∇wuh + q − q0, ∇u − ∇wuh)T

−(q − q0, ∇u − ∇wuh)T ]

= −

∑
T∈Th

[(∇wuh + q0, ∇u − ∇wuh)T

+(∇w · qh + cu0 − f , u − u0)T + c(u − u0, u − u0)T ]

− ℓ1(u, qh) + ℓ2(uh, q) + ℓ3(uh, qh).

This implies,∑
T∈Th

[
∥∇u − ∇wuh∥

2
T + c∥u − u0∥

2
T

]
= −

∑
T∈Th

[(∇wuh + q0, ∇u − ∇wuh)T

+(∇w · qh + cu0 − f , u − u0)T ]

− ℓ1(u, qh) + ℓ2(uh, q) + ℓ3(uh, qh).

Using (27)–(29) and the Cauchy–Schwarz inequality,∑
T∈Th

(∥∇u − ∇wuh∥
2
T + c∥u − u0∥

2
T ) ≤ Cϵ−1

∑
T∈Th

η2
T

+ 2ϵ
∑
T∈Th

∥∇u − ∇wuh∥
2
T + ϵ

∑
T∈Th

c∥u − u0∥
2
T

+ ϵ
∑
T∈Th

(∥q − q0∥
2
T + ∥∇ · q − ∇w · qh∥

2
T ). (32)

Similarly,∑
T∈Th

∥q − q0∥
2
T =

∑
T∈Th

((q − q0 + ∇u − ∇wuh, q − q0)T − (∇u − ∇wuh, q − q0)T

= −

∑
T∈Th

((q0 + ∇wuh, q − q0)T ) + (∇w · qh + cu0 − f , u − u0)T

− c(u − u0, u − u0)T ) − ℓ1(u, qh) + ℓ2(uh, q) + ℓ3(uh, qh),

which implies,∑
T∈Th

(∥q − q0∥
2
T + c∥u − u0∥

2
T ) ≤ Cϵ−1

∑
T∈Th

η2
T

+ ϵ
∑
T∈Th

∥∇u − ∇wuh∥
2
T + ϵ

∑
T∈Th

c∥u − u0∥
2
T

+ 2ϵ
∑
T∈Th

(∥q − q0∥
2
T + ∥∇ · q − ∇w · qh∥

2
T ). (33)

In addition, from (32) and (33), we have,∑
T∈Th

∥∇ · q − ∇w · qh∥
2
T ≤ 2

∑
T∈Th

(∥∇ · q − ∇w · qh + c(u − u0)∥2
T + c∥u − u0∥

2
T )

= 2
∑
T∈Th

(∥∇w · qh + cu0 − f ∥2
T + c∥u − u0∥

2
T )

≤ Cϵ−1
∑
T∈Th

η2
T + 3ϵ

∑
T∈Th

∥∇u − ∇wuh∥
2
T + 2ϵ

∑
T∈Th

c∥u − u0∥
2
T

+ 3ϵ
∑
T∈Th

(∥q − q0∥
2
T + ∥∇ · q − ∇w · qh∥

2
T ). (34)
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Using (32)–(34),∑
T∈Th

(
∥∇u − ∇wuh∥

2
T + c∥u − u0∥

2
T + ∥q − q0∥

2
T + ∥∇ · q − ∇w · qh∥

2
T

)
≤ Cϵ−1

∑
T∈Th

η2
T + 6ϵ

∑
T∈Th

∥∇u − ∇wuh∥
2
T + 4ϵ

∑
T∈Th

c∥u − u0∥
2
T

+ 6ϵ
∑
T∈Th

(∥q − q0∥
2
T + ∥∇ · q − ∇w · qh∥

2
T ).

By choosing ϵ = 1/12, we obtain (31) directly, which completes the proof. □

Finally, we show that the a posteriori error estimator is also efficient locally.

Theorem 3. Let u and q be the solution of (4)–(6) and uh = {u0, ub} and qh = {q0, qb} be the solution of (10). There exists a
positive constant C such that

η2
T ≤ C(∥u − uh∥

2
h,T + ∥q − qh∥

2
h,T ). (35)

Proof. Using (5),

∥∇w · qh + cu0 − f ∥T = ∥∇w · qh + cu0 − ∇ · q − cu∥T

≤ ∥∇w · qh − ∇ · q∥T + c∥u − u0∥T

≤ ∥u − uh∥h,T + ∥q − qh∥h,T .

On the other hand, by (4),

∥q0 + ∇wuh∥T = ∥q0 + ∇wuh − q + ∇u∥T

≤ ∥q − q0∥T + ∥∇u − ∇wuh∥T

≤ ∥u − uh∥h,T + ∥q − qh∥h,T .

Combining the two estimates above and using the definition of ηT , (12), (35) follows directly. □

Summing over all the element T , we obtain the following global lower bound for the error estimator.

Theorem 4. Let u and q be the solution of (4)–(6) and uh = {u0, ub} and qh = {q0, qb} be the solution of (10). There exists a
positive constant C such that

η2
≤ C(∥u − uh∥

2
h + ∥q − qh∥

2
h). (36)

Remark 3.1. For general symmetric positive definite A, we need to slightly modify the definition of the local error estimator
as follows,

η2
T = ∥∇w · qh + cu0 − f ∥2

T + ∥A−
1
2 q0 + A

1
2 ∇wuh∥

2
T + s1,T (uh, uh) + s2,T (qh, qh). (37)

where A
1
2 is the square root of A and A−

1
2 is its inverse. Moreover, the definition of ∥u − uh∥

2
h,T and ∥q − qh∥

2
h,T is modified

as follows,

∥u − uh∥
2
h,T = ∥A

1
2 (∇u − ∇wuh)∥2

T + ∥u − u0∥
2
T + s1,T (uh, uh),

∥q − qh∥
2
h,T = ∥A−

1
2 (q − q0)∥2

T + ∥∇ · q − ∇w · q∥
2
T + s2,T (qh, qh).

Then the analysis can be carried out in a similar manner with a slight modification and the reliability and efficiency of the
a posteriori error estimator still hold. The main difference is that the constant C in the reliability bound (31) depends on
max{λmax(A), λ−1

min(A)}, where λmax(A) and λmin(A) are the extreme eigenvalues of A, and the constant C in the efficiency
bound (35) is independent of A.

Theorems 2, 3, and 4, and more specifically estimates (31), (35), and (36), show that the a posteriori error estimator is
both efficient and reliable. We now use this fact to develop an adaptive refinement algorithm.

4. The adaptive WG-LS method

Following [32], for the adaptive approximation of (4)–(6), we consider a loop of the form (1). In particular, assume that an
initial mesh T0, a parameter θ ∈ (0, 1], and a targeted tolerance ε are given. Let uℓ and qℓ denote the approximate solutions
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to (10) on the ℓth level adaptive mesh, Tℓ, and let ηℓ
T and ηℓ denote the local and global a posteriori error estimator on mesh

Tℓ, respectively. Then, the adaptive algorithm is summarized in Algorithm 1.

Algorithm 1 Adaptive WG-LS Method
[uJ , qJ ] = AFEM(T0, θ, ε)
1: Set ℓ = 0
2: loop
3: [uℓ, qℓ] = SOLVE(Tℓ)
4: [{ηℓ

T }T∈Tℓ
, ηℓ

] = ESTIMATE(uℓ, qℓTℓ)
5: if ηℓ

≤ ε then
6: J = ℓ and uJ := uℓ, qJ = qℓ.
7: return
8: end if
9: Mℓ = MARK(Tℓ, {η

ℓ
T }T∈Tℓ

, ηℓ, θ )
10: Tℓ+1 = REFINE(Tℓ,Mℓ)
11: ℓ = ℓ + 1
12: end loop

As shown, the adaptive algorithm involves four different modules, i.e., SOLVE, ESTIMATE, MARK, and REFINE. In the next
few sections, we introduce and define these four modules used in the adaptive loop.

4.1. SOLVEModule

The SOLVEmodule takes the current adaptive grid as input and outputs the corresponding WG-LS approximation to the
problem. This stage may involve a variety of other numerical techniques needed to discretize the problem and to solve the
linear systems. The detailed module with our specific approach is shown in Algorithm 2.

Algorithm 2 SOLVEmodule
[uℓ, qℓ] = SOLVE(Tℓ)
1: On current grid, Tℓ, assemble the linear system of equations corresponding to the WG-LS scheme (10).
2: Solve the linear system for uℓ and qℓ (in this work, MATLAB’s built-in ‘‘\’’ function is used, i.e., a sparse direct solver).

4.2. ESTIMATEModule

Given an adaptivemesh and theWG-LS approximations, uℓ and qℓ, the ESTIMATEmodule computes the a posteriori error
estimator, ηℓ

T , on each element T ∈ Tℓ. Here, we use the local estimator (12) and the algorithm is shown in Algorithm 3.

Algorithm 3 ESTIMATEModule
[{ηℓ

T }T∈Tℓ
, ηℓ

] = ESTIMATE(uℓ, qℓ, Tℓ)
1: Compute ηℓ

T on each element T ∈ Tℓ using (12).
2: Compute ηℓ based on (13).

4.3. MARKModule

The MARKmodule selects elements T ∈ Tℓ whose local error indicator ηℓ
T is relatively large and which need to be refined.

In this work, we use the Döflers marking strategy [32], and this module is shown in Algorithm 4.

Algorithm 4 MARKModule
Mℓ = MARK(Tℓ, {η

ℓ
T }T∈Tℓ

, ηℓ, θ )
1: Choose a subset Mℓ ⊂ Tℓ such that

ηℓ(Mℓ) ≤ θηℓ, (38)

where ηℓ(Mℓ) :=

(∑
T∈Mℓ

ηℓ
T

) 1
2
.
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Fig. 1. Refinement of polygonal mesh: (a) Original polygon; (b) After refinement.

Here, we require the parameter θ ∈ (0, 1]. While the choice of Mℓ is not unique, in practice, we choose the size of the
subsetMℓ to be as small as possible. Therefore, we use a greedy approach, where we rank the elements, T , according to the
error indicators, ηℓ

T , from largest to smallest. Then, we choose the elements with the largest error, so that condition (38) is
satisfied using the minimal number of elements.

4.4. REFINEModule

The final module, REFINE, refines the marked elements T ∈ Tℓ and outputs a newly refined mesh Tℓ+1. Traditionally, for
simplicial meshes (triangles in 2D and tetrahedrons in 3D), sophisticated refinement procedures, such as newest vertex
bisection, need to be used in order to keep the shape regularity of the elements and eliminate any hanging nodes that
are introduced during refinement. Those refinement algorithms are usually quite complicated and not easy to implement
(see [32] for details). However, one of the advantages of the WG-LS scheme is that it allows for the usage of more general
polygonal meshes, where hanging nodes are not an issue. This gives more freedom and flexibility on how to perform
the refinement of an element without worrying about the conformity of the meshes. Therefore, for this work, we use a
straightforward approach to refine a polygonal element. More precisely, on one element, T , the refinement is performed by
connecting the barycenter of the polygon and the middle point of each edge on the boundary. See Fig. 1. Because hanging
nodes are allowed, no further steps are needed to eliminate them. Therefore, the union of the new elements obtained
from refining T ∈ Mℓ, along with the elements T ∈ Tℓ\Mℓ gives the new adaptive mesh Tℓ+1. This is summarized in
Algorithm 5.

Algorithm 5 REFINEModule
Tℓ+1 = REFINE(Tℓ,Mℓ)
1: for T ∈ Mℓ do
2: refine T as shown in Figure 1.
3: end for
4: Combine all new elements and subset Tℓ\Ml to construct the new mesh Tℓ+1.

5. Numerical examples

Next, we perform several numerical tests to validate the theoretical results using the overall adaptive WG-LS algorithm,
Algorithm 1, based on the a posteriori error estimator (13). The tests are implemented in MATLAB based on iFEM [33] and
the polygonal meshes used in the experiments are produced by PolyMesher [34].

5.1. Efficiency and reliability of a posteriori error estimator η

In this subsection, we show the effectiveness of the proposed a posteriori error estimator η by verifying its efficiency and
reliability, i.e., Theorems 2 and 3. More precisely, we define the effective index as follows

eff-index =
η(

∥u − uh∥
2
h + ∥q − qh∥

2
h

) 1
2
, (39)

which is the ratio between the a posteriori error estimator and the true error. According to the reliability result (31) and
the efficiency result (35), we expect the effective index to be bounded from both above and below. In fact, as is shown later,
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Table 1
Efficiency and reliability tests for Example 5.1.

h
(
∥u − uh∥

2
h + ∥q − qh∥

2
h

)1/2 Rate η Rate Eff-index

Triangular mesh

1/4 8.3451e−02 7.5531e−02 0.91
1/8 3.9910e−02 1.06 3.7073e−02 1.03 0.93
1/16 1.9702e−02 1.02 1.8436e−02 1.01 0.94
1/32 9.8179e−03 1.00 9.2051e−03 1.00 0.94
1/64 4.9048e−03 1.00 4.6009e−03 1.00 0.94
1/128 2.4519e−03 1.00 2.3002e−03 1.00 0.94

Rectangular mesh

1/4 9.5636E−02 9.2179E−02 0.96
1/8 4.7251E−02 1.02 4.6711E−02 0.98 0.99
1/16 2.3599E−02 1.00 2.3528E−02 0.99 1.00
1/32 1.1800E−02 1.00 1.1791E−02 1.00 1.00
1/64 5.9001E−03 1.00 5.8990E−03 1.00 1.00
1/128 2.9501E−03 1.00 2.9500E−03 1.00 1.00

Polygonal mesh

1/4 8.9887E−02 8.4270E−02 0.94
1/8 4.3345E−02 1.05 4.1622E−02 1.02 0.96
1/16 2.1899E−02 0.98 2.1418E−02 0.96 0.98
1/32 1.1078E−02 0.98 1.0901E−02 0.97 0.98
1/64 5.5544E−03 1.00 5.4883E−03 0.99 0.99
1/128 2.7958E−03 0.99 2.7667E−03 0.99 0.99

the effective index of the proposed a posteriori error estimator is very close to 1, demonstrating that η provides a very good
estimate of the true error. In order to compute the effective index, we need to know the exact solution of u and q.

Example 5.1. Consider the model problem (4)–(6) with A = I , where I is the identity matrix, c = 2, and Ω = (0, 1)× (0, 1).
Choose the following analytical solution,

u = x(1 − x)y(1 − y).

Homogeneous Dirichlet boundary conditions are used (g = 0) and the right-hand side function f is computed accordingly.

The efficiency and reliability tests are performed on uniform triangular, rectangular, and polygonalmesheswith different
mesh size h. Here,we use linear elements, i.e., k = 1. The true error and the a posteriori error estimator are reported in Table 1
together with the effective index defined as in (39).

From Table 1, we see that both the true error and the a posteriori error estimator converge with the optimal rate, which
is 1 for k = 1. Not only do they have the same convergence rate, but they are almost the same for all test cases. Similarly,
the effective index is close to 1 for all cases as well. This demonstrates that the a posteriori error estimator, η, provides an
efficient and reliable estimate of the true error

(
∥u − uh∥

2
h + ∥q − qh∥

2
h

)1/2. This also implies that the constants involved
in the efficiency estimate (35) and reliability estimate (31) are both close to 1. Finally, we note that the a posteriori error
estimator is also robust with respect to different types of meshes. This property implies that the a posteriori error estimator
and the adaptive algorithm based on it can be effectively applied to meshes which consist of different types of elements.

5.2. Adaptive algorithm on general polygonal meshes

Next, we use the adaptive algorithm (Algorithm 1) to solve the model problem (4)–(6) on general polygonal meshes and
demonstrate the robustness of the proposed a posteriori error estimator (13), as well as the overall adaptive method. We
choose θ = 0.2 in the MARKmodule for all test problems.

Example 5.2. Consider the model problem (4)–(6) with A = I , where I is the identity matrix, and c = 0 on an L-shaped
domain with a reentrant corner, namely Ω = (−1, 1)2\[0, 1)× (−1, 0]. The exact solution is u(r, φ) = r2/3 sin( 23φ) in polar
coordinates. The right-hand side f = 0 and Dirichlet boundary conditions, u = g are used on ∂Ω .

We first solve Example 5.2 by Algorithm 1 with the initial mesh T0 being a rectangular mesh as shown in Fig. 2(a).
Although we start with a uniform rectangular mesh, after applying the refinement procedure discussed in Section 4.4,
adaptive meshes Tℓ, ℓ ≥ 1, become general polygonal meshes with possible hanging nodes. The final adaptive meshes
with different polynomial degrees (k = 1 and k = 2) are shown in Fig. 2, and we see that they are general polygonal meshes.
More importantly, for both cases, the adaptive meshes are refined mainly around the corner where the singularity occurs.
In addition, the refinements are more focused around the corner singularities when k = 2. This is expected since away from
the corner, the solution is smooth and high-order schemes provide a better approximation. In Fig. 3, we plot the true error
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Fig. 2. Example 5.2: (a) Initial rectangular mesh; (b) Final mesh with linear elements, k = 1; (c) Final mesh with quadratic elements, k = 2.

Fig. 3. Convergence tests for the L-shaped problem (Example 5.2) using a rectangular initial mesh.

and error estimator η for k = 1 and k = 2, respectively. As shown, the error estimator is quite close to the true error. From
Table 2, we can see that the effective index is about 0.5−0.9, whichmeans that the error estimator is efficient and reliable on
adaptive general polygonalmeshes. Additionally, both convergewith the optimal rate, i.e.,N−0.5 for k = 1 andN−1 for k = 2,
where N is the total number of degrees of freedom. This shows the optimality of the adaptive algorithm.

We next repeat the same test with the initial mesh T0 being a polygonalmesh as shown in Fig. 4(a). Final adaptivemeshes
for k = 1 and k = 2 are shown in Fig. 4(b) and (c), respectively. Similarly, the meshes are correctly refined near the corner
where the singularity is, showing the effectiveness of the adaptive Algorithm 1 for general polygonal meshes. Moreover, the
refinements are more focused when k = 2 as expected. The convergence results are plotted in Fig. 5. Again, the true error
and the error estimator are quite close. In fact, the effective index is about 0.7 − −0.9 as shown in Table 3. Therefore, we
conclude that the adaptive algorithm converges with optimal order for both k = 1 and k = 2 on general polygonal mesh as
well.

In the final test, we consider a problem with an interior layer, which is not resolved on the initial meshes.

Example 5.3. Consider the model problem (4)–(6) with A = I , where I is the identity matrix, and c = 0 on a square
domain Ω = (0, 1) × (0, 1). The exact solution is

u = 16x(1 − x)y(1 − y) arctan(25x − 100y + 50),

which has a sharp interior layer as shown in Fig. 6. Homogeneous Dirichlet boundary conditions are used (g = 0) and the
right-hand side function f is computed accordingly.

We again test with two different initial meshes: a rectangular mesh and a polygonal mesh. As shown in Figs. 6, 7 and
9, both meshes are locally refined near the interior layer as expected. This shows that the a posteriori error estimator, η,
successfully detects the singularities along the interior layer so that our adaptive algorithm can accurately refine along that
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Fig. 4. Example 5.2: (a) Initial polygonal mesh; (b) Final mesh with linear elements, k = 1; (c) Final mesh with quadratic elements, k = 2.

Fig. 5. Convergence tests for the L-shaped problem (Example 5.2) using a polygonal initial mesh.

Table 2
Efficiency and reliability tests for Example 5.2 with rectangular initial mesh (shown as
Fig. 2(a)).

Refined steps DOFs
(
∥u − uh∥

2
h + ∥q − qh∥

2
h
)1/2 η Eff-index

Results for k = 1

1 120 2.8016e−01 2.0852e−01 7.4430e−01
5 240 1.9363e−01 1.6534e−01 8.5388e−01

10 690 1.2097e−01 9.7574e−02 8.0660e−01
15 1893 7.6209e−02 5.8731e−02 7.7065e−01
20 5595 4.7324e−02 3.5583e−02 7.5191e−01

Results for k = 2

1 200 1.4622e−01 7.2139e−02 4.9336e−01
5 400 7.0034e−02 3.7995e−02 5.4251e−01

10 660 3.8928e−02 2.7145e−02 6.9731e−01
15 1340 2.4894e−02 1.6331e−02 6.5601e−01
20 2505 1.3985e−02 9.0276e−03 6.4552e−01

layer. As expected, such refinement is more focused with less pollution when k = 2. Again this is because the solution is
quite smooth away from the singularity. In addition, we plot the true error and the error estimator in Figs. 8 and 10 for the
different initial meshes, respectively. In all cases, the true error and the error estimator do not convergewell at the beginning
of the adaptive algorithm. This is because themesh is still not locally refined enough to capture the interior layer completely.
Once the mesh is refined to capture the layer, the optimal convergence rate is achieved for all cases. From Tables 4 and 5, we
can see that the effective index is about 0.6− −0.9 which shows that the error estimator approximates the true error quite
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Table 3
Efficiency and reliability tests for Example 5.2with polygonal initial mesh (shown as Fig. 4(a)).

Refined steps DOFs
(
∥u − uh∥

2
h + ∥q − qh∥

2
h
)1/2 η Eff-index

Results for k = 1

1 1047 1.2916e−01 1.1339e−01 8.7792e−01
5 1401 9.7526e−02 8.3008e−02 8.5113e−01

10 3924 5.7645e−02 4.5632e−02 7.9161e−01
15 9384 3.7333e−02 2.7122e−02 7.2648e−01
20 27459 2.3641e−02 1.7583e−02 7.4376e−01

Results for k = 2

1 1745 4.9363e−02 3.6032e−02 7.2995e−01
5 1995 2.6775e−02 1.8850e−02 7.0402e−01

10 2435 1.6496e−02 1.1911e−02 7.2205e−01
15 3695 9.6811e−03 6.8209e−03 7.0456e−01
20 6680 5.4837e−03 3.7892e−03 6.9099e−01

Fig. 6. Example 5.3: (a) Exact solution; (b) Numerical solution on final mesh shown as Fig. 7(c); (c) Numerical solution on final mesh shown as Fig. 9(c).

Fig. 7. Example 5.3: (a) Initial rectangular mesh; (b) Final mesh with linear elements, k = 1; (c) Final mesh with quadratic elements, k = 2.

well. Overall, the adaptive algorithm based on the proposed a posteriori error estimator is effective on general polygonal
meshes.

6. Discussion

In [9], theWG-LS method was proposed to solve mixed formulations of Poisson’s equation on general polygonal meshes.
Here, in order to resolve the singularities that usually appear in practical applications, we derive an a posteriori error
estimator for the WG-LS method and theoretically prove that it is reliable and efficient. An adaptive algorithm is also
developed based on the proposed error indicator and a simple refinement scheme. This adaptive WG-LS method is easily
implemented and the numerical experiments presented here demonstrate its robustness. The a posteriori error estimator
accurately captures singularities as well as interior layers, and the overall adaptive algorithm achieves optimal convergence
in practice.
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Fig. 8. Convergence tests for Example 5.3 using a rectangular initial mesh.

Fig. 9. Example 5.3: (a) Initial polygonal mesh; (b) Final mesh with linear elements, k = 1; (c) Final mesh with quadratic elements, k = 2.

Fig. 10. Convergence tests for Example 5.3 using a polygonal initial mesh.

Futurework involves extending the adaptiveWG-LSmethod to other applications. In addition, based on the reliability and
efficiency results, we will theoretically prove the optimal linear convergence and computational complexity of the adaptive
algorithmusing the framework proposed in [32]. Finally, in order to achieve the full potential of the adaptiveWG-LSmethod,
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Table 4
Efficiency and reliability tests for Example 5.3 with rectangular initial mesh (shown as
Fig. 7(a)).

Refined steps DOFs
(
∥u − uh∥

2
h + ∥q − qh∥

2
h
)1/2 η Eff-index

Results for k = 1

1 456 7.4742e+00 5.4008e+00 7.2259e−01
5 582 9.0813e+00 6.1551e+00 6.7777e−01

10 852 7.2369e+00 4.7588e+00 6.5757e−01
15 1569 6.2796e+00 3.9191e+00 6.2410e−01
20 3048 4.8116e+00 3.7600e+00 7.8145e−01
25 8505 3.0131e+00 2.5276e+00 8.3886e−01
30 25128 1.8329e+00 1.5482e+00 8.4467e−01
35 74445 1.1041e+00 9.2828e−01 8.4075e−01

Results for k = 2

1 760 9.5896e+00 7.6956e+00 8.0250e−01
5 920 6.4620e+00 5.1345e+00 7.9458e−01

10 1130 5.6455e+00 4.1229e+00 7.3031e−01
15 1640 4.4214e+00 3.5152e+00 7.9504e−01
20 2390 2.9776e+00 2.2892e+00 7.6882e−01
25 4250 1.9212e+00 1.4834e+00 7.7215e−01
30 7805 1.2091e+00 9.3808e−01 7.7587e−01
35 14300 6.7927e−01 5.7008e−01 8.3926e−01

Table 5
Efficiency and reliability tests for Example 5.3with polygonal initial mesh (shown as Fig. 9(a)).

Refined steps DOFs
(
∥u − uh∥

2
h + ∥q − qh∥

2
h

)1/2
η Eff-index

Results for k = 1

1 612 8.6299e+00 6.1078e+00 7.0774e−01
5 780 7.2732e+00 3.9663e+00 5.4533e−01

10 1080 6.8099e+00 4.0300e+00 5.9178e−01
15 1671 6.3390e+00 4.4649e+00 7.0436e−01
20 3420 4.6317e+00 3.5092e+00 7.5766e−01
25 8619 3.1636e+00 2.5765e+00 8.1444e−01
30 24789 2.0097e+00 1.6421e+00 8.1712e−01
35 75624 1.1920e+00 9.8636e−01 8.2747e−01

Results for k = 2

1 1025 8.2012e+00 5.7751e+00 7.0417e−01
5 1305 5.9464e+00 4.3151e+00 7.2566e−01

10 1725 4.6714e+00 3.7978e+00 8.1298e−01
15 2460 3.3975e+00 2.5637e+00 7.5458e−01
20 4025 2.3416e+00 1.7140e+00 7.3201e−01
25 6045 1.4879e+00 1.2278e+00 8.2517e−01
30 11490 8.8482e−01 7.0348e−01 7.9506e−01
35 22225 4.9469e−01 4.0818e−01 8.2512e−01

we will design optimal multigrid solvers based on the adaptive polygonal meshes and ultimately solve the resulting linear
system of equations efficiently.
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