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Abstract. In this paper, we present block preconditioners for a stabilized discretization of
the poroelastic equations developed in [C. Rodrigo, X. Hu, P. Ohm, J. Adler, F. Gaspar, and
L. Zikatanov, Comput. Methods Appl. Mech. Engrg., 341 (2018), pp. 467—484]. The discretiza-
tion is proved to be well-posed with respect to the physical and discretization parameters and thus
provides a framework to develop preconditioners that are robust with respect to such parameters as
well. We construct both norm-equivalent (diagonal) and field-of-value-equivalent (triangular) pre-
conditioners for both the stabilized discretization and a perturbation of the stabilized discretization,
which leads to a smaller overall problem after static condensation. Numerical tests for both two-
and three-dimensional problems confirm the robustness of the block preconditioners with respect to
the physical and discretization parameters.
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1. Introduction. In this work, we study the quasi-static Biot model for soil
consolidation, where we assume a porous medium to be linearly elastic, homogeneous,
isotropic, and saturated by an incompressible Newtonian fluid. According to Biot’s
theory [7], the consolidation process satisfies the following system of partial differential
equations (PDEs):

equilibrium equation: —dive’ +aVp=pg in{,
constitutive equation: o' = 2ue(u) + Adiv(u)l inQ,

1
compatibility condition: e(u) = g(Vu +Vu') inQ,

1
Darcy’s law: =——K(Vp—prg) inQ,
By

w
. . 0 (1 . . .
continuity equation: o Mp +adivu | +divw = f in{,

where A and p are the Lamé coefficients, « is the Biot—Willis constant, M is the
bulk modulus, K is the absolute permeability tensor of the porous medium, pf is
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the viscosity of the fluid, I is the identity tensor, w is the displacement vector, p is
the pore pressure, o’ and € are the effective stress and strain tensors for the porous
medium, and w is the percolation velocity, or Darcy’s velocity, of the fluid relative
to the soil. The right-hand term g is the density of applied body forces, and the
source term f represents a forced fluid extraction or injection process. We consider a
bounded open subset Q C R¢, d = 2,3, with regular boundary T'.

In many physical applications, the values of some of the parameters described
above may vary over orders of magnitude. For instance, in geophysical applications,
the permeability can typically range from 1072 to 1072'm? [37, 51]. Similarly, in
biophysical applications such as in the modeling of soft tissue or bone, the permeability
can range from 107* to 107*%m?2 [6, 48, 50]. The Poisson ratio, which is the ratio
of transverse strain to axial strain, ranges from 0.1 to 0.5 in these applications as
well. A Poisson ratio of 0.5 indicates an incompressible material, at which the linear-
elastic term becomes positive semidefinite. Due to the variation in relevant values
of these physical parameters, it is important to use discretizations that are stable,
independently of the parameters. Therefore, in this work we build upon a parameter-
robust discretization introduced in [47].

There are several formulations of Biot’s model, and many stable finite-element
schemes have been developed for each of them. For instance, in what is called the two-
field formulation (displacement and pressure are unknowns), Taylor—-Hood elements
which satisfy an appropriate inf-sup condition have been used [43, 44, 45]. Unstable
finite-element pairs with appropriate stabilization techniques, such as the MINT ele-
ment, have also been developed [46]. Robust block preconditioners for the two-field
formulation were studied in [2]. For three-field formulations (displacement, pressure,
and Darcy velocity are unknowns), a parameter-independent approach is found in [29].
There, the parameter-robust stability is studied based on a slightly different norm than
used here, and robust block diagonal preconditioners are proposed. Another stable
discretization for the three-field formulation is Crouzeix—Raviart for displacement,
lowest order Raviart-Thomas—Nédélec elements for Darcy’s velocity, and piecewise
constants for the pressure [32]. Additionally, a different three-field formulation (dis-
placement, fluid pressure, and total pressure are unknowns) was introduced in [37],
and a corresponding parameter-robust scheme is studied in the same paper. For a
four-field formulation (stress tensor, fluid flux, displacement, and pore-pressure are
unknowns), a stable discretization was developed in [36].

In all the cases above, typical discretizations result in a large-scale linear system
of equations to solve at each time step. Such linear systems are usually ill-conditioned
and difficult to solve in practice. Also, due to their size, iterative solution techniques
are usually considered. One approach to solving the coupled poromechanics equations
considered here is a sequential method, such as the fixed stress iteration, which consists
of first approximating the fluid part and then the geomechanical part. This is then
repeated until the solution has converged to within a specified tolerance (see [3, 5, 9,
10, 42] for details). Another approach is to solve the linear system simultaneously for
all unknowns. Examples of this in poromechanics can be found in [2, 12, 22, 24, 25, 39]
and the references within. Analysis from [13, 52] indicates that such a fully implicit
method outperforms the convergence rate of the sequential-implicit methods.

Thus, in this work, we take the latter approach and develop robust block pre-
conditioners (see, e.g., [19, 20, 26]) to accelerate the convergence of Krylov subspace
methods solving the full linear system of equations resulting from the discretization
of a three-field formulation of Biot’s model. The proposed preconditioners take ad-
vantage of the block structure of the discrete model, decoupling the different fields
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at the preconditioning stage. Such block preconditioning is primarily attractive due
to its simplicity, which allows us to focus on the character of the diagonal blocks
and to leverage extensive work on solving simpler problems. For instance, one can
take advantage of algebraic multigrid for some of the blocks [11] or auxiliary space
decomposition for others [4, 28]. Finally, since we use a stabilized discretization that
is well-posed with respect to the physical and discretization parameters [47], we are
able to develop robust block preconditioners that efficiently solve the linear systems,
independently of such parameters as well.

The rest of the paper is organized as follows. Section 2 reintroduces the three-
field formulation and stabilized finite-element discretization considered. Stability of a
perturbation to the finite-element discretization is discussed in section 3. The block
preconditioners are then developed in section 4, presenting both block diagonal and
block triangular approaches. Finally, numerical results confirming the robustness and
effectiveness of the preconditioners are shown in section 5, and concluding remarks
are made in section 6.

2. Three-field formulation and its discretization. The focus of this paper is
on the three-field formulation, in which Darcy’s velocity, w, is also a primary unknown
in addition to the displacement, u, and pressure, p. As a result, we have the following
system of PDEs:

—dive’ +aVp = pg, where o' = 2ue(u) + Adiv(u)l,
o (1
En (Mp—|— Q@ divu) +divw = f,
K*quw + Vp = pyrg.
This system is often subject to the following set of boundary conditions. Though
nonhomogeneous boundary conditions can also be used, for the sake of simplicity, we
consider the homogeneous case in this work:
p=0 for z€Ty, o'n=0 for xeTy,
u=0 for z€l,, w-n=0 for z€T,,
where n is the outward unit normal to the boundary, I = T, UT'.; I’y and I are open

(with respect to I') subsets of I' with nonzero measure. The initial condition at t =0
is given by

(Azpmdivu) (.0)=0, ze.

This yields the following mixed formulation for Biot’s three-field consolidation model.
For each t € (0,T), find (u(t),p(t),w(t)) € V x Q x W such that

(2.1) a(u,v) — (ap,divv) = (pg,v) Vv eV,

(2.2) (Azglt),q) + (adivzq;,q> +(divw,q) = (f,q9) Vqe@,
(2.3) (K~ pjw,r) — (p,dive) = (prg,7) VreW,

where

(2.4) a(u,v) = Q;L/Qs(u) re(v) + )\/Qdivudivv
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corresponds to linear elasticity and (-, ) denotes the standard inner product on L?(€2).
The function spaces used in the variational form are

V={uecH Q)| ul, =0},

Q:LQ(Q)7
W ={we H(div,Q) | (w-n)|r, =0},

where H'(Q2) is the space of square integrable vector-valued functions whose first
derivatives are also square integrable, and H(div, Q) contains the square integrable
vector-valued functions with square integrable divergence.

In [47], we developed a stabilized discretization for the three-field formulation
described above. Given a partition of the domain, €2, into d-dimensional simplices,
Trn, we associate a triple of piecewise polynomial, finite-dimensional spaces:

VhCV, QhCQa WhCW

More specifically, if we choose a piecewise linear continuous finite-element space, V;, 1,
enriched with edge/face (two-dimensional/three-dimensional) bubble functions, V;,
then to form Vj, = V3, 1 &V, (see [27, pp. 145-149]), a lowest order Raviart—Thomas—
Nédélec space (RT0) for W), and a piecewise constant space (P0) for @y, Stokes—
Biot stable conditions described in section 3 are satisfied and the formulation is well-
posed. Then, using backward Euler as a time discretization on a time interval (0, tiax |
with constant time-step size 7, the discrete scheme corresponding to the three-field
formulation (2.1)—(2.3) reads as follows:
Find (u}?, pp, wp*) € Vi, x Q1 x W), such that

a(up',vp) — (apy', dive,) = (pg,vn) Vv, € Vi,

1 . . _
(MPT7Qh> + (adivuy', qn) + 7(divwy’, qn) = (f,qn) YV qn € Qn,

(K tppw) my) — 7(pf, divey) = 7(prg,mn) V7 € Wy,

where (f,qn) = 7(f,qn) + (ﬁpzlfl,qh) + (a divu’{‘fl,qh), and (up’, pp*, wy") is an
approximation to (w(-,tm), p(-,tm), w(-,ty)), at time ¢, = mr, m = 1,2,.... The
last equation has been scaled by 7 for symmetry. To simplify the notation, we carry
out the following stability analysis for a constant time-step size. However, we note
that utilizing a variable time-step size leads to analogous results.

Moreover, this discrete variational form can be represented in block matrix form,

uy, Ay Ay aB] 0
u;, - . o AZ; All OéBlT 0

(2.5) A o =b, with A= —aB, —aB ﬁMp By, |
wy, 0 0 BT 1M,

where uy, u;, p, and w are the unknown vectors for the bubble components of the
displacement, the piecewise linear components of the displacement, the pressure, and
the Darcy velocity, respectively. The blocks in the definition of matrix A correspond
to the following bilinear forms:

a(ubh,'ufl) — Ay, a(uﬁl,v,ﬁ) — Ay, a(u%,vé) — Ay,

—(diV u;’” qh) — Bb; —(div u%, qh) — Bh —(divwh, qh) — Bw,
(Kﬁl'u,fwh,’l’h) — Mw, (ph7Qh) — MP7
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where uj, = ulf +ul, ul € Vi, 1, u} € V;, and an analogous decomposition for vy,.
We further define two matrices for use later,

a(up,vp) = Ay, —(divup,qn) = B,

Awp Ay
Au =
( Ap  An )
and Bu = (Bb Bl)

A noteworthy result of [47] is that one can replace the enrichment bubble block,
App, in (2.5) with a spectrally equivalent diagonal matrix, Dy, := (d + 1)diag(Ap),
resulting in the following linear operator:

such that

Dbb Abl aB;F 0

Ag; All ozBlT 0
—aB, —abB ﬁMp —TBy
0 0 7BL 1M,

(2.6) AP =

Not only is the resulting operator sparser than the operator in (2.5), but the stabiliza-
tion term can be eliminated from the operator in a straightforward way (i.e., static
condensation), yielding

A” - AZ;D&,lAbl O(BZT - O(AZED&}BE 0

(2.7) AP = —aBi+aByDy' Ay M, +a?ByDy' BT —71B,,
0 TBL T Moy

Thus, we obtain an optimal stable discretization with the lowest possible number of
degrees of freedom, equivalent to a discretization with P1-RT0-PO elements, which
itself is not stable [47]. While we have reduced the number of degrees of freedom,
we note that the sparsity structure of the stiffness matrix has changed as well. The
number of nonzeros added to each row depends on the structure of the mesh. The
(1,1) block and the (2,1) block increase in nonzeros per row by the number of elements
adjacent to a vertex times dimension. In the worst case scenario for the structured
grid formed by division of cubes into tetrahedrons, the (1,1) block grows from 37
nonzeros per row to 81 nonzeros per row. The (1,2) block and (2,2) block increase in
nonzeros per row by the number of elements adjacent to each element. For the (1,2)
block, this doubles the nonzeros per row. The (2,2) block is originally diagonal, so the
nonzeros per row increase to (spatial) dimension+2. In all cases, the computational
cost of multiplication by the modified matrix has the same asymptotic behavior as
the mesh size approaches zero.

In [47], it is discussed that due to the spectral equivalence between Ay, and Dy,
the formulation (2.6) is still well-posed and remains well-posed independently of the
physical and discretization parameters. In the following section (and appendices), we
show this in detail and prove that formulation (2.7) is also well-posed independently
of the physical and discretization parameters.

3. Well-posedness. The well-posedness of the discretized system provides a
convenient framework with which to construct block preconditioners. The discrete
system using bubble enriched P1-RT0-PO0 finite elements (2.5), which will be referred
to as the “full bubble system,” is shown to be well-posed in [47]. However, since (2.5)
is indefinite, the well-posedness of (2.7) does not simply follow directly. Therefore,
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in this section, we show the well-posedness of (2.7), as well as (2.6), which enables
block preconditioners for both the full system and the “bubble-eliminated system” to
be constructed using the same framework. Since the proofs are quite technical, we
include them in the appendices for completeness. First, we give a short overview of
the full bubble system case.

To start, for any symmetric positive definite (SPD) matrix H, we define the
corresponding inner product as (u,v)y := (Hu,v) and the induced norm as ||v||%, =
(v,v)g. In association with the discretized space, X}, := V}, X Qp, x W}, we introduce
the following weighted norm for x;, = (wp, pn, wi)? € Xp:

1/
(81 el = [lunl, + e Ipallis, + 7llwnlis, + 72| Buwal2, ]

where ¢, 1= (?—SJrﬁ)fl, with ¢ := /A + 2u/d, and d = 2 or 3 is the dimension of the
problem. Under certain conditions (referred to as Stokes—Biot stability [47, Definition
3.1]) on the space X, the block matrix form A defined in (2.5) is well-posed with
respect to the weighted norm (3.1); i.e., the following continuity and inf-sup condition
hold for x;, € X}, and yp, = (vn, qn, 1) € Xi:

(3.2) sp sup  ATmU)
o4z, e X, 02y, eX, lZnllllynll
Az,
(3.3) nf osup (AT YR

0#£yn€Xn 0wy, e, [[@nllllynll —

with constants ¢ > 0 and v > 0 independent of mesh size h, time-step size 7, and
the physical parameters. As mentioned earlier, these conditions are satisfied by our
choice of finite-element spaces.

System (2.6) satisfies similar continuity and inf-sup conditions. From [47], we
know that Ay, is spectrally equivalent to Dy, and A, is spectrally equivalent to
AD = (22’: f";ll ), specifically,

(34) [u”]a,, < 4’llDy, < nllw’llay, and lufla, < ullap < nllu]a,,

where the constant 1 depends only on the shape regularity of the mesh. With the
above results, we now state the well-posedness of the system given by (2.6).

THEOREM 3.1. If (V},, Wy, Q},) is Stokes—Biot stable, then

D
(3.5) sp sup  ATwY) o
0#x,€X) 0#yneXy ”thD”thD
APxy,. -
(3.6) inf sup (AZ@nyn). > 7,
0#Yn€Xn ozne X, [ZnllolYnllD
where
Dy, Ay 0 0
D Al Ay 0 0
o0 (Ze)M 0 ’
0 0 0 TMy + T2CpAw

and Ay = BZ;MP’IBU,.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/04/20 to 130.64.11.161. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ROBUST PRECONDITIONERS FOR POROELASTIC EQUATIONS B767

REMARK. In general, Theorem 3.1 implies that if we have a well-posed saddle
point problem with an SPD first diagonal block, one can replace the first diagonal
block by a spectrally equivalent matrix and the resulting saddle point problem is still
well-posed.

The proof of Theorem 3.1 follows from the framework presented in [29]. We have
included a proof in Appendix A, as there are details related to the perturbed bilinear
form that are not straightforward. Next, we consider the reduced bubble-eliminated
formulation, (2.7). Here we denote X7 := V), x Qp x W), the discretized finite-
element space after bubble elimination.

THEOREM 3.2. If the full system (2.5) is well-posed, satisfying (3.2) and (3.3)
with respect to the norm (3.1), then the bubble-eliminated system, (2.7), satisfies the
following inequalities for € = (uy, pn,wy)T € XF and y¥ = (v, qn, )T € XF:

EE , E
(3.7) inf sup M >
04areXF ozgtixs [@F oz [P s
and
ABgE yF
(3.8) sup sup # <g,
0£zFPeXF 0£yPeX]f |zE | pe ||y F |l pe
where
Ay — AL Dy Ay 0 0
DF = 0 o?By D' Bl + ;' M, 0 ,
0 0 My + TQCpAw
with
(3.9) le” |5 = (DPa”, "),

Thus, (2.7) is well-posed with respect to the weighted norm (3.9).

The proof of Theorem 3.2 is technical due to A being indefinite. Therefore, it is
included in Appendix B for the interested reader.

4. Block preconditioners. Next, we use the properties of the well-posedness
to develop block preconditioners for A and A¥. Following the general framework
developed in [12, 38, 41, 52, 30], we first consider block diagonal preconditioners (also
known as norm-equivalent preconditioners). Then we discuss block triangular (upper
and lower) preconditioners following the framework developed in [33, 38, 40, 49] for
field-of-value (FOV) equivalent preconditioners. For both cases, we show that the
theoretical bounds on their performance remain independent of the discretization and
physical parameters of the problem.

4.1. Block diagonal preconditioner. Both the full bubble system, (2.5), and
the bubble-eliminated system, (2.7), are well-posed, satisfying inf-sup conditions, (3.3)
and (3.7), respectively. Based on the framework proposed in [38, 41], a natural choice
for a norm-equivalent preconditioner is the Riesz operator with respect to the inner
product corresponding to respective weighted norm (3.1) or (3.9).
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4.1.1. Full bubble system. For the full bubble system, the Riesz operator for
(3.1) takes the following block diagonal matrix form:

-1

Au 0 0
w1)) Bo=| O (Z+4)M 0
0 0 My + 72 (?—jJrﬁ)_lAw

In practice, applying the preconditioner Bp involves the action of inverting the
diagonal blocks exactly, which is expensive and sometimes infeasible. Therefore, we
replace the diagonal blocks by their spectrally equivalent symmetric and positive
definite approximations,

N Su 0 0
(4.2) Bo=| 0 S, 0
0 0 S

Here, Sy, Sw, and S, are spectrally equivalent to the action of the inverse of their
respective diagonal blocks in Bp:

(4.3) c1u(Sutt,u) < (Ay u,u) < e u(Suu,u),
o2 1\ ! .
(4.4) 1,p(Spp, p) < atu M 'p,p | < c2,5(Sppsp),
2 -1 -1
4.5) €1 40 (Sww, w) < TMy, + 72 a—+i Ay w,w | < cop(Sww,w),
, M ’

where the constants ¢ u, €1,p, C1,w, C2,u, C2,p, and €24, are independent of discretiza-
tion and physical parameters. In practice, S, can be defined by standard multigrid
methods. For large values of 7, the matrix 7M,, + 72(‘2‘—2 + ﬁ)_lAw is numerically
close to singular and requires special preconditioners. With this in mind, S,, can
be defined by either an HX-preconditioner (auxiliary space preconditioner) [28, 34]
or multigrid with special block smoothers [4]. In the case of heterogeneous coeffi-
cients, specialized approaches such as in [35] can be used. In the full bubble case, S,
is obtained by a diagonal scaling (M, is diagonal when using PO elements). Thus,
_ (a? 1\ Llar—1
Sp - (% + H) Mp :
4.1.2. Bubble-eliminated system. In the bubble-eliminated case, the opera-
tor for (3.9) takes the following block diagonal matrix form:
AE 0 0 -
E
(4.6) BE O 0

—1
0 0 er+T2(%§+ﬁ) Ay

Here, AZ = Ay — Aan_blAbl and Af* = (%j + ﬁ)Mp + ozZBbDI;)leT.
Again, we replace the diagonal blocks by their spectrally equivalent symmetric
and positive definite approximations,

. SE-0 0
(4.7) BE=| 0 SF o
0 0 Sy
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Here, SE and Sf are spectrally equivalent to the action of the inverse of their respec-
tive diagonal blocks in BE:

(4.8) P (SEu,u) < ((AD)"uu) < fy (SEu, w),

5
w1
(4.9) r,(SPp.p) < ((AJ*) p.p) < 5, (SFp.p),

where the constants cfu, cfp, cfu, and cfp are independent of discretization and
physical parameters. In practice, SE and S, can be defined similarly as in the full
bubble case, and Sf can be defined through standard multigrid methods, as Af* is
equivalent to a Poisson operator.

Since the preconditioners are derived directly from the well-posedness, they too
are robust with respect to the physical and discretization parameters of the problem.
When applying the preconditioners to the bubble-eliminated formulation, though,
a modest degradation in performance compared to the full bubble system is seen.
However, robustness with respect to the parameters remains. These properties are
demonstrated in the numerical results section.

4.2. Block triangular preconditioner. Next, we consider more general pre-
conditioners, in particular, block upper triangular and block lower triangular precon-
ditioners for the linear system, given by A or AF, following the framework presented
in [2, 33, 38, 40, 49] for FOV-equivalent preconditioners. First, we define the notion
of FOV equivalence as in [38]. Given a Hilbert space X and its dual X', a left pre-
conditioner, £ : X’ — X, and a linear operator, A : X — X', are FOV-equivalent if,
for any z € X,

(LAx, )\ ||[LAZ| pr-2
CE I

(4.10) 5 < <.

In general, N : X’ — X can be any SPD operator. Here we choose N to be a
SPD norm-equivalent preconditioner, and ¥ and Y are positive constants, with ¥ <
Y. Using this definition, we have the following theorem on the convergence rate of
preconditioned GMRES for solving Ax = f.

THEOREM 4.1 (see [18, 21]). If A and L are FOV-equivalent and ™ is the mth
iteration of the GMRES method preconditioned with L, and x is the exact solution,
then

»2\ ™
(4.11) ILA(x — x™)|| -1 < (1 — T) [ILA(x — w0)||N71.

2

If the constants ¥ and YT are independent of physical and discretization parame-
ters, then £ is a uniform left preconditioner for GMRES.

REMARK. Similar arguments apply to right preconditioners for GMRES, which
are used in practice. A right preconditioner, R : X' — X, and linear operator,
A: X — X', are FOV-equivalent if, for any ' € X',

(ARz' . x'),, || AR |x
@2y " ey

(4.12) ¥ < <.
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4.2.1. Full bubble system. For the three-field formulation, we first consider
the block lower triangular preconditioner,
-1

Au 0 0
a? 1
(413)  By=| —Bu (T + M) My 0 :
-1
0 BT My + 72 (?— + ﬁ) A

and the inexact block lower triangular preconditioner,

N St 0 0\

(4.14) Br=| —aB, S;' 0
0 TBL St
THEOREM 4.2. Assuming a shape regular mesh and the discretization described

above, there exist constants 3 and Y, independent of discretization and physical pa-
rameters, such that, for any * = (u,p,w)T # 0,

(BrAz, @) 5,1 ||BrAz| s,)-1
(T, %) 5,)-1
THEOREM 4.3. Assuming the spectral equivalence relations (4.3) and (4.5) hold,

[T — SuAulla, <p<0.2228, and S, = (%j + ﬁ)flMp’l, then there exist constants

Y and Y, independent of discretization and physical parameters, such that, for any
z = (u,p,w)" #0,

<T.

HwH(BD)_l

(BLA:EZB)(EE)“ HBLA:B”(E;)—I

)

»<

(@, 2) 55)-1 12/l &5 -

The proofs of the above two theorems turn out to be a special case of the proofs
for the bubble-eliminated system (shown below) and thus are omitted here.

Similar arguments can also be applied to block upper triangular preconditioners.
We consider the following for A in (2.5),
-1

Ay aBY 0
2
(4.15) By=| 0 (%2 + %) M, —TBuw :
—1
0 0 ™My +7 (G4 Aw

and the corresponding inexact preconditioner,

- St aBT 0
(4.16) By = 0 S;l —T By
0 0 St
Parameter robustness for the block upper triangular preconditioners is summarized
in the following theorems. Again, as these results are special cases of those in the

following section, we only state the results here.

—1

THEOREM 4.4. Assuming a shape regular mesh and the discretization described
above, there exist constants X and Y, independent of discretization and physical pa-
rameters, such that, for any ' = B[;l:c with = (u,p,w)T # 0,

(ABva', @),y | ABua'||(5,)

, <T7.
(m/»‘n')(gD)

12" [l (8)
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THEOREM 4.5. Assuming the spectral equivalence relations (4.3) and (4.5) hold,

I — AuSulla, <p<0.2228, and S, = (2‘—22 + ﬁ)_lMp_l, then there exist constants

3 and Y, independent of discretization and physical parameters, such that, for any
z' = By'z with x = (u,p,w)” #0,

ABypa! x') T
L B o) g,

- (:c’,m’)(g;) , H‘B/”(A

<T.

4.2.2. Bubble-eliminated system. For the three-field formulation, we con-
sider the block lower triangular preconditioner,

AP 0 0
(4.17) BE— | —aBi AF” 0 )
0 7BT Mg+ 12 <% + ﬁ) Ay

and the inexact block lower triangular preconditioner,

-1

. sETY o 0
(4.18) Bf = _O‘BE S;)E_l 0 )
0 7BL Sy

where BY = B; — BbDl;}Abl. For notational convenience, we define Af = ﬁMp +
a2BbDlbeT as the pressure block in the bubble-eliminated system.

LEMMA 4.6. If the pair of finite-element spaces Vi, X Q}, is Stokes stable, i.e., they
satisfy the inf-sup condition [27]

divo,p
(4.19) sup {VVD) 5 oy e @,
vevi  |Iv]h

then, in matriz form, we have

(4.20) 18Pl g > T el Vo€ @
with v = 4% /V/d. Furthermore, from (3.4), we have

(4.21) 1BZpl apy-+ > %%BnpuMp Y pe Q.

Proof. Here we use v to denote both the finite-element function and its vector
representation. Since Vj x @Qj is Stokes stable, it satisfies the inf-sup condition in
(4.19), where 7% > 0 is a constant that does not depend on mesh size. Using the
fact that a(w,u) < (21 + d\)(e(u), e(u)), we have ||v|| 4, < VdC||v|;. Then, for any
p € Qn,

(Byv,p) (divw, p) ’Y% B
(4.22) Sup ~—————= > sup > Ipllaz, =2 —=plla, -
veVi [Vllan " wevi VdC|vlly T V¢ ¢

Using (4.22) and

||BTp|| -1 = Sup M = sup M
wt/ll Ay vEVS ||’U||Au eV Hv”Au )
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(4.20) is obtained. Equation (4.21) follows from (3.4), the spectral equivalence of A,,
and AD. d

In order to prove that (4.17) and (4.18) satisfy the requirements to be FOV-
equivalent preconditioners for the AF system, we need the following relation for the
bubble-eliminated system:

(4.23) 1B Pl gy = 2<2IIPIIM (D, By p, By p).

This is established using Lemma 4.6, the first two by two blocks of (B.4), and a direct
computation. With this result, we now show that (4.17) satisfies the requirements to
be an FOV-equivalent preconditioner for AF.

THEOREM 4.7. Assuming a shape reqular mesh and the discretization described
above, there exist constants ¥ and Y, independent of discretization or physical param-
eters, such that, for any € = (u,p,w)’ # 0,

E \E
(BEA @) gpy | BEA" |-

7 'y
(wi)(sg)—l ||33||(Bg)71

Proof. By direct computation and the Cauchy—Schwarz inequality,
(BEAEvaw)(Bg)*l = ||U||,245 +a((BS) p,u) + 042H(BE)TP||%A§)71 + Hp“%AE)
— ra?((AP%) N (BE)(AE) N (BE)Tp, Byw)
—7((AE*) " (AP)p, Buww) + 7| Byw|? (azey-r Hllwly,

1

> [lullfe — all(B) pllaz) -1 lullaz +®[(BE) Pl ag)-
+ ||P||%Ag) - 7042H(BE)(AE)*I(BE)TJUH(AF',E*)*1 ”waH(Af*)*
= TI(AD)Pl 4z 1Bwwl gz -

+ 72 [ Buwllyp.y 1 + 7wl -

By the definitions of matrices Af*, M,, and Af , we have

a? 1\ '
(4.24) lglfEaze)-+ < (Cz + M> lalls;
(4.25) lal1f sy < lallEaz)-

Then, using (4.24) on the ||(BE)(AE)_l(BE)TpH(AE*)4 term and (4.25) on the
H(Af)pH(AE*)4 term, we obtain
(BLAP@, @) 55y > [ulllip — all(BL) pllag)-1l|ullaz
+a?[[(BY) pllEagy—r + IplEas)
1

2 o? Ly 2 E[ AE T
— T §+* B, (Ay)~ (B )pHM*1||wa||(Af*)*1

=7l ap) | Buwwll apey-1 + 72 Bww [z 1 + Tlwlliy, -
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Observing that, for d = 2,3, a(v,v) < (2u + dX\)(e(v), €(v)) for any v and by direct
computation of the elimination of the bubble, we have
(4.26) CIBEvIZ, - < [lo]%p-

Applying (4.26) to the || BE (AE)’l(BE)TpHMI;l term with v = (AZ)~Y(BE)Tp gives

(BEAPz, )55y 2 lullie — all(By) pllcaz)-1lullaz

+a?[[(B) pllEagy—r + 2l az)

N

a [a? 1\
raf (G qp) IBE bliagyIBuwl gy

= 7Pl ap) | Buwwllagey-+ + 7 Bww|[{ g5y 1 + Tllwlliy,
> [lulliy — oll(Bi) pllcaz)-1lullag + o (B) plIEaz) -
+plItaz) = 7all(B) plcar) -1 1Bwwl gz

= 7llpllag) [Bwwll apeyr + 72| BwwlEypey 1 + 7llwlis,,

2

where we use the fact that %(%2 + ﬁ)_

N

< 1. Rewriting the right-hand side,

(BE.AECE,LE)(BE)fl

] 4 /1 2L 0 0 o0 ] 4
oll(BEY pliaz)-1 11 0 % o || alBE Pz

> Ipll az) 0 0 1 Lo Ipllcaz)
T||wa\|(A£;*)—1 0 -4 -3 1 0 ’THBw/lU”(AE*)—l
Vrllwlla, 0 0 0 0 1 Vrllwlla,

The above matrix is SPD, meaning that there is a ¢ > 0 such that

(BEAZZ, @) 5+ = o (Ilulse + (B plZag) -1 + lpllEar,

+ 72 Buwl|y ey + Tlwllis,)
2 o? ENT, |12 2
> o (IlulBg + G IED Dy + Il

+ B0l + Tl ).
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Using (4.23) and the definition of ||pHAg, we get

B o
2n?2 (2

b Bl gy + 7ol )

2
« _
(BL APz, ) ey > U(IIUIIZE + IPl13s, = 5 (Dy By p, By p) + [plIaz)

g o?
202 (2

b Bl gy + 7ol )

1 a?
P13, + 571113, + = (D3 By v, By p)

—o (el + .

2
. 1
> o (el +min {221} plRape) + 7Bl

n T||w||%4w>

2 . [ Lo
Z o [lullys + min ?71 §||P||(A§*)

2 o? 1\’ 2 2
+ 7 ?Jrﬂ [Buwwl[y, 1 + 7wl
Z Z(wﬂr)(Bg)*la

where ¥ = 0% min{1, %} This provides the lower bound for the bubble-eliminated
case. The upper bound follows from the continuity of each term and the Cauchy—

Schwarz inequality. O

Next, we prove that (4.18) satisfies the requirements to be an FOV-equivalent
preconditioner for the AF system when the inexact diagonal blocks are solved to
sufficient accuracy.

THEOREM 4.8. Assuming the spectral equivalence relations (4.5), (4.8), and (4.9)
hold, |I — SFAL|4e < p, and ||I — ST:E(AE*)H(AE*) < B, with p > 0 and § > 0
sufficiently small, then there exist constants ¥ and Y, independent of discretization
and physical parameters, such that, for any € = (u,p, w)’ # 0,

RE AE =
T < (54 x’w)@)*l IBEA@ | ) -
T (@@)gp, lell ggy-

Proof. Assume that ||[I — SFAJ||az < p and that ||I — S];E(Af*)H(A;E*) < 8. By
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direct computation,

(BAEAEw,w)@—I = [lul%s + a((BF)p, S Agu) + o*|[(BE) pll5s + IIPH?A;;)
+7a(SY(BE)I — SYAL)u, Byw)
—7a?(S;(By)Sy (B) p, Bww)
— (S (A])p, Bww) + || Buwwl[ge + 7llwlf3y,
> |lulfie — all(BE) pllse | Agullse + o2([(BZ) s + 1Pl )
—1al|(By)(I = 8 Ag)ulls || Bwwl|se
—70”|[(B5) Sy (BL) pllse | Bwwl|se

— APl s [ Buwwllse + 71| BuwlZp + 7wy,

Using [|[I-S7 AL | ap < pand [|[I-SFAT* | ap- < Bon|[[AZullse, [|BE (I-SF AT )ull sz,
HBESE(BE)TpHSE, and ||Afp\|SpE allows us to change norms and apply (4.26), (4.24),
and (4.25) to these terms in the same way as in the previous proof. Thus,

BEAT @, &)1 > |ule — a(L+ p)[(By) pllsz lulaz + ?[[(B)) pllsx
D

N

« a2 1\
Hlilag 720+ 0 (G4 5 )  lullaglBuwlss

Nl

— (14 8) (14 p) @ 1y 1(BZ) pllsz | Bwwl
¢ P\e "M w PleelPwilsy

=71+ B)lIpll(az) [ Bww|se + 72||wa\|§g + 7wl
> |ullhe = a(l+p) (B pllse

+ ||p||%AE) = 7(1+ B)pllul ax

—1a(l+B)(1+p)[(Bg) " plisz | Bwwl sz

=71+ B)llpllaz) [ Buwwllse + 7| Buwlge + rllwlf3y,-

ull g + o®(|(B) pllEe

waHsg

Then, rewriting the right-hand side,

lulaz — \ " ] o
_ al[(B) " pllsz all(By) pllsz
(BEA 2, @)1 > Ipllcaz) Q Ipllcaz) ,
i 7| Bwwl|sz 7| Bwwl[se
V7llwla, VTllwlla,
where

1 —1(1+p) 0 —ip(1+B) 0
—1(1+p) 1 0 —11+p(1+p) 0
Q= 0 0 1 —35(1+8) 0
—5p(1+8) —5(1+p)(1+8) —3(0+5) 1 0
0 0 0 0 1
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If B8 and p are sufficiently small, then the above matrix is SPD, and there is a ¢ > 0
such that

(BEAP, ) s > a(nunig +(BE)plZe + pl2ag) + 7] Bueol2e

D

" rwn%@,)

2 ’Y% 042 2
g(u — pllulsey- + (1= p) Ipllas,

22 (2
2
(0% _
— (1= )5 (D BT w, BEp) + Iplitag, + 72 BuwlBs

n rwnm)

2 ’Y}ZB o? 2
> a(u — DllulEsey-r + (1 p) 222 pl3,,
2

22 (2
)0‘7

_ 1
b (14 ) (D BEp B + =9l + 721 Bl
4 rwn%h,)

U-p(-8) . [ %
O'((l—p)||u||%sf)1+2m1n lanig ”p”%Sf)’l

a? 1\ '
w1 (Gt gp) IBwwl + rlwlks,

> Y(x,x)

(BE)-1

where ¥ = aw min{1, 77—"223} This provides the lower bound. The upper bound
follows from the continuity of each term and the Cauchy—Schwarz inequality. 0

REMARK. Values for B and p that are sufficiently small can be calculated numer-
ically. For example, if 0 < B = p < 0.1291, then the above matriz is SPD.

Similar arguments can also be applied to block upper triangular preconditioners.
We consider the following upper preconditioner for A¥ in (2.7):
-1

Al a(B)T 0
Ex
(4.27) = 0 4 —TBw :
2
0 0 Myt (H ) Aw

where, again, AZ = A; — A;;FZD,;}AM, Af* = (‘Z—j + ﬁ)Mp +a2BbD,;)1BgF, and BE =
B, — B;,Db_b1 Ap; when preconditioning the bubble-eliminated case. The corresponding
inexact preconditioner is given by

-1

-1
_ Su o alB)T 0
(4.28) Bf = 0 SETN 1B,
0 0 St

Parameter robustness is obtained for the block upper triangular preconditioners using
the following theorems. The proofs are similar in concept to the proofs for Theorem 4.7
and 4.8 and are therefore omitted.
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THEOREM 4.9. Assuming a shape regular mesh and the discretization described
above, then there exist constants ¥ and T, independent of discretization and physical
parameters, such that, for any €' = (BE) 'z with x = (u,p,w)” # 0,

(AElgg":/»wl)(Bg) HAEBEWH(B{L;)

, <7
(@', ') g5, 2| (52)

THEOREM 4.10. Assuming (4.5), (4.8), and (4.9) hold, |I — AZSE| 4, < p, and
|1 — AE*SI‘?HAE* < B, with p > 0 and > 0 sufficiently small, there exist constants
Y and Y, independent of discretization and physical parameters, such that, for any
z' = (BE) 'z with x = (u,p,w)T #0,

ERE . ok
5 < (475t ’gc)@) IA*BG2"l g,

= / N ) T =

This shows that the constructed block preconditioners are robust with respect to
the physical and discretization parameters of the bubble-eliminated system, (2.7).

5. Numerical results. In this section, we illustrate the convergence benefits ob-
tained using the preconditioners presented above. All test problems were implemented
in the HAZmath library [31], which contains routines for finite elements, multilevel
solvers, and graph algorithms. The numerical tests were performed on a workstation
with an 8-core 3GHz Intel Xeon “Sandy Bridge” CPU and 32 GB of RAM per core.

For each test, we use flexible GMRES to solve the linear system obtained from
both the bubble-enriched P1-RT0-P0 discretization, A (2.5), and the bubble-eliminated
discretization, A¥ (2.7). A stopping tolerance of 10~® was used for the relative resid-
ual of the linear system, measured relative to the norm of the right-hand side. For
the discretization parameters, tests cover different mesh sizes and different time-step
sizes. To show robustness with respect to the physical parameters, the permeability,
K, and the Poisson ratio, v, are varied. We also consider a three-dimensional test
problem where there are jumps in the permeability. In all test cases, we consider a
diagonal permeability tensor K = kI. The exact solves for the blocks in Bp, Br, and
By are done using the UMFPACK library [14, 15, 16, 17]. For the inexact blocks,
Su and SZ are inverted using GMRES preconditioned with unsmoothed aggregation
AMG in a V-cycle, solved to a relative residual tolerance of 1073, The Sy, block is
solved using an auxiliary space preconditioned GMRES to a relative residual toler-
ance of 1073 [4, 28, 34]. Using a piecewise constant finite-element space for pressure
results in a diagonal matrix for M, so the action of S}, is directly computed in the full
bubble case. In the bubble-eliminated case, Sf is inverted using GMRES precondi-
tioned with unsmoothed aggregation AMG in a V-cycle, solved to a relative residual
tolerance of 1073,

5.1. Two-dimensional test problem. First, we consider the Mandel problem
in two dimensions, which models an infinitely long saturated porous slab sandwiched
between a top and a bottom rigid frictionless plate and is an important benchmarking
tool, as the analytical solution is known [1]. At time ¢ = 0, each plate is loaded with a
constant vertical force of magnitude 2F per unit length, as shown in Figure 5.1. The
analytical solution for pressure is given by

[ee) . 2

sin o, anT —a‘ct
5.1 Y, t) =2 (cos——cos )e u ,
(5.1)  pla,y,t) =2po Y - o, XP< 22

— sin o, COS a

n=1
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3v+B(1-2v) .
SoB(—w) 8 the
undrained Poisson ratio, ¢ is the consolidation coefficient given by ¢ = K (A + 2u),
and «,, are the positive roots to the nonlinear equation

where pg = %B(l +1,)F, B =1 is Skempton’s coefficient, v, =

1—v
tan o, = Q.
Vy — V

Due to symmetry of the problem, we only need to solve in the top right quadrant,
defined as 2 = (0,1) x (0,1). We cover Q with a uniform triangular grid by dividing

an N x N uniform square grid into right triangles, where the mesh spacing is defined
by h = % For the material properties, puy = 1, « = 1, and M = 105, the Lamé
coefficients are computed in terms of the Young modulus, E = 10%, and the Poisson

: . _ E _ _FE
I‘atlo7 Vi A= m and n = 420"

2b

FiG. 5.1. Two-dimensional physical and computational domain for Mandel’s problem.

Table 5.1 shows iterations counts for the block preconditioners on the full bubble
system for different mesh sizes and time-step sizes. Here we take one time step using
backward Euler. The physical parameters used in these tests were v = 0.0 and k =
1075. We see from the relatively consistent iteration counts that the preconditioned
system is robust with respect to the discretization parameters. The block upper and
lower triangular preconditioners contain more coupling information than the block
diagonal preconditioners, and as a result we see that they perform better than the
block diagonal preconditioners.

Similar observations are made for Table 5.2, which shows iteration counts for the
block preconditioners on the bubble-eliminated system for different mesh sizes and
time-step sizes. We see that using the bubble-eliminated system results in a slight
degradation in performance, but nothing significant. It is also important to note that
the performance impact of using the inexact block preconditioners is negligible versus
using the exact block preconditioners. This implies that the inexact preconditioners
could potentially be solved with less strict tolerance, resulting in more computational
efficiency.

Tables 5.3 and 5.4 show iteration counts for the block preconditioners when the
physical values of v and K are varied for the full bubble system and the bubble-
eliminated system. The mesh size is fixed to h = %, and the time-step size is 7 =
0.01. Again, we observe robustness, this time with respect to the physical parameters.
The use of inexact preconditioners and the bubble elimination have minimal impact
on the performance. In the limit of impermeability (kK — 0), or in the limit of the
Poisson ratio approaching 0.5, the three-field Biot model limits to the Stokes equation.
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TABLE 5.1
Full bubble system. Iteration counts for the block preconditioners on the two-dimensional Man-
del problem with varying discretization parameters.

Bp Br By
h 1 1 1 1 1 i1 1 1 1 i 1 1 1 _1
- 8 16 32 64 128|| 8 16 32 64 128 || 8 16 32 64 128
0.1 39 40 40 40 38 (|19 19 18 17 17 ||19 19 19 18 17

0.01 26 34 39 39 38 (|15 18 19 18 17 ||14 17 18 18 17
0.001 ({23 23 28 34 37 ||11 12 15 17 18 (|10 11 14 17 17
0.0001 (|21 21 21 21 21 ||11 10 10 13 15 8§ 9 9 12 14

Bp By By
h i1 1 1 1) i 1 1 1 1)1 1 1 1 _1
T 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
0.1 39 40 40 40 36 |19 20 19 19 18 ||19 19 19 18 20

0.01 26 34 39 39 38 (|15 18 19 19 18 ||14 17 18 18 17
0.001 (23 23 23 34 37 (|11 13 15 17 18 ||10 12 15 17 17
0.0001 (21 22 21 23 29 ([11 11 11 13 15 9 9 10 12 15

TABLE 5.2
Bubble-eliminated system. Iteration counts for the block preconditioners on the two-dimensional
Mandel problem with varying discretization parameters.

BE BE BE

h r 1 1 1 1 i1 1 1 1 i1 1 1 1
T 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
0.1 36 40 43 43 42 (|23 23 23 22 21 [|22 23 23 22 21

0.01 26 30 37 40 40 ||17 21 22 22 22 ||16 20 22 22 21
0.001 ({32 29 25 31 35 ||17 15 18 21 22 ||14 14 16 20 21
0.0001 (34 35 31 25 26 ([19 18 16 14 18 ||14 14 14 13 17

_— E —~E —~FE
Bp Br, Bu
h i1 1 1 141 1 1 1 1 |1 1 1 1 1
T 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
0.1 36 40 43 43 43 |[23 24 23 22 23 [|22 23 23 22 21

0.01 26 30 37 40 40 ||17 21 22 23 22 [|16 20 22 22 21
0.001 ({32 29 25 31 35 ||18 15 18 21 22 ||15 14 17 20 21
0.0001 (34 35 31 25 26 ([19 18 16 15 18 ||14 14 14 14 17

An interesting result is the better performance when the system is approaching this
case.

Finally, Figure 5.2 shows the time scaling with respect to mesh size for the three
different inexact preconditioners for the full bubble and bubble-eliminated systems.
The timings scale on the order of O(N log N), which is nearly optimal. We also see
that while a single iteration of the block lower or block upper triangular preconditioner
will take longer than that of a block diagonal iteration, the fewer required iterations
of the block triangular preconditioners results in a net savings in total computational
time. The bubble-eliminated system, being a smaller system than the full-bubble
system, takes less time to solve. Figure 5.2 shows that solving the bubble-eliminated
system is nearly 10 times faster than solving the full-bubble system.

5.2. Three-dimensional test problem. Next, we consider a footing problem
in three dimensions, as seen in [23]. The domain, illustrated in Figure 5.3, is a unit
cube modeling a block of porous soil. A uniform load, o, of intensity 3 x 10* per
unit area is applied in a square of size 0.5 x 0.5 in the middle of the top face. The
base of the domain is assumed to be fixed, while the rest of the domain is free to
drain. The material properties used are py =1, o =1, and M = 105, and the Lamé
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TABLE 5.3
Full bubble system. Iteration counts for the block preconditioners on the two-dimensional Man-
del problem with varying physical parameters K and v.

v = 0.0 and varying K K =106 and varying v
1 1072 107% 107% 108 10710 0.1 0.2 04 045 0.49 0.499
Bp | 23 25 35 38 29 19 45 52 39 36 28 20
By | 7 11 15 17 15 9 16 19 11 11 9 10
By | 13 16 17 16 15 7 20 22 16 14 11 16
Bp | 35 33 36 38 29 19 45 52 39 26 23 17
Br |14 15 16 18 15 10 17 20 14 12 11 12
By | 27 22 17 17 15 8 21 24 17 16 10 16
TABLE 5.4

Bubble-eliminated system. Iteration counts for the block preconditioners on the two-dimensional
Mandel problem with varying physical parameters K and v.

v = 0.0 and varying K K =106 and varying v
1 1072 107* 107% 10=% 1070 || 0.1 0.2 04 045 049 0.499
B§ 36 36 41 42 26 34 43 54 44 43 39 22
Br 17 17 19 21 18 16 20 24 21 20 17 12
BE | 23 22 22 21 17 12 24 928 23 23 20 17
Bp” |3 38 41 43 26 34 || 43 54 44 43 39 20
—~F

Br. 20 20 20 23 18 17 20 26 22 21 18 13
ByY | 21 ot 22 21 17 13 25 28 23 23 20 17

102 T T

101+ 1

= I ]

) 100 ; E

g r ]

= i ]

1071 E

10_2?\\\\\\ [ [ \\E

10° 10 10°
N (number of elements)

FiG. 5.2. Timing results versus mesh size for the full bubble and bubble-eliminated systems for
the two-dimensional Mandel problem, where N 1is the total number of elements. The performance
comparison between the inexact block diagonal, block upper triangular, and block lower triangular
preconditioners is shown.

coeflicients are computed in terms of the Young modulus, and the Poisson ratio, as
in the two-dimensional problem.

Tables 5.5 and 5.6 show iteration counts for the block preconditioners on both
systems, while varying the discretization parameters, mesh size, and time-step size.
Again, one step of backward Euler is used to test the preconditioners. The physical
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oo

F1G. 5.3. The three-dimensional footing problem. The image on the left shows the computational
domain, while the figure on the right shows an example solution.

TABLE 5.5
Full bubble system. Iteration counts for the block preconditioners on the three-dimensional foot-
ing problem with varying discretization parameters (x means the direct method for solving diagonal
blocks is out of memory).

Bp Br, By
L | TS T o 101 1 1 101 1 1
T 4 8 16 32 4 8 16 32 4 8 16 32
0.1 60 65 65 % || 34 36 36 * || 32 34 34 =
0.01 47 57 68 % || 30 34 37 x || 26 31 35
0.001 40 42 49 % || 26 28 32 x || 20 23 28
0.0001 || 40 42 42 % || 24 35 36 % || 20 20 21
Bp Br
L | I S S T ¥ 101 1 1 11 1 1
T 4 8 16 32 4 8 16 32 4 8 16 32
0.1 60 65 66 64 || 34 36 36 36 || 32 34 34 34
0.01 47 58 68 71 || 30 34 37 39| 2 31 35 37
0001 || 42 42 51 63|/ 26 28 32 36 || 20 24 28 33
0.0001 || 40 42 42 45 || 24 25 27 29 || 21 22 23 25

parameters for these tables were v = 0.2 and k = 107%. Here the benefits of the
inexact preconditioners become clear, as the exact preconditioners could not be used
on the two largest meshes due to memory limitations. The iteration counts confirm
that the preconditioned system is robust with respect to the discretization parameters
even in three dimensions.

Tables 5.7 and 5.8 show the results when the physical parameters are varied. The
mesh size is fixed to h = 1—16, and the time-step size is 7 = 0.01. Again, we see that the
preconditioned system is robust with respect to the physical parameters and that the
use of the inexact preconditioners has little impact on the required iterations. The
bubble-eliminated system shows performance that is overall similar to the full bubble
system.

Similarly to Figure 5.2, Figure 5.4 shows time scaling with respect to mesh size for
the three different inexact preconditioners for the full bubble and bubble-eliminated
systems, again showing a nearly optimal scaling of O(N log N). The time comparison
between the three different inexact preconditioners again demonstrates that the block
lower and block upper triangular preconditioners are faster than the block diagonal
preconditioner despite being more expensive per iteration. Finally, we see that solv-
ing the bubble-eliminated system is faster than solving the full bubble system, as
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TABLE 5.6
Bubble-eliminated system.  Iteration counts for the block preconditioners on the three-
dimensional footing problem with varying discretization parameters (* means the direct method for
solving diagonal blocks is out of memory).

Bp By By
bl 1 1 1 101 1 1 11 1 1
T 4 8 16 32 4 8 16 32 4 8 16 32
0.1 61 65 66 * || 41 41 39 * || 39 39 38 =
0.01 54 58 66 o+ || 39 42 43 o« || 33 39 41
0.001 || 58 58 53 % || 37 39 40 « || 28 32 35 9«
0.0001 || 59 61 60 % || 35 38 38 % || 29 29 30
_—E —~E —~E
BD BL BU
Pl 1 1 1 101 1 1 11 1 1
T 4 8 16 32 4 8 16 32 4 8 16 32
0.1 61 65 66 66 || 41 41 39 39 || 40 40 38 37
0.01 54 58 66 70 || 39 42 43 43 || 33 39 41 42
0001 || 58 58 53 61 || 37 39 40 43 || 28 32 35 40
0.0001 || 58 61 60 55 || 35 38 38 38 || 29 30 30 32

TABLE 5.7
Full bubble system. Iteration counts for the block preconditioners on the three-dimensional
footing problem with varying physical parameters, K and v.

v = 0.2 and varying K K = 1076 and varying v
1 1002 10=* 10°% 10°% 10710 0.1 0.2 04 045 049 0.499
Bp | 28 28 49 68 12 35 72 68 51 46 35 26
Br | 20 20 27 37 26 24 41 37 25 21 17 20
By 18 18 26 35 21 14 38 35 25 21 17 20
Bp | 28 28 49 68 42 42 72 68 51 46 35 26
Br | 20 20 28 37 27 25 41 37 25 21 17 20
By | 21 21 27 35 22 24 387 35 25 21 17 21
TABLE 5.8

Bubble-eliminated system.  Iteration counts for the block preconditioners on the three-
dimensional footing problem with varying physical parameters, K and v.

v = 0.2 and varying K K =106 and varying v
1 1072 107%* 107 108 10710 0.1 0.2 04 045 0.49 0.499
BE |33 33 51 66 60 61 70 66 53 48 43 28
Bg 20 20 29 43 38 35 46 43 32 28 24 21
B 20 20 29 41 28 18 44 41 31 27 24 21
Bp" | 33 33 51 66 60 61 70 66 53 48 43 28
[;ZE 29 22 30 43 38 36 46 43 32 28 24 22
Bo¥ | 22 22 29 11 29 29 4 41 31 28 24 22
expected.

In order to show the full capabilities of the preconditioners, we test on the three-
dimensional footing problem when there is a spatially dependent jump in the value
for the permeability tensor K. The permeability tensor, K = k(x)I, is defined so
that k(z) = 1071° when z < 0.5 and varied for > 0.5. The results are shown in
Tables 5.9 and 5.10. The Poisson ratio is v = 0.2, the mesh size is fixed to h = 1—16,
and the time-step size is 7 = 0.01. Note that the size of the jump increases from
left to right in the table. We see that, at the beginning, the iteration counts for the
preconditioned system increase when the jump gets larger. However, it stabilizes as
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107
— 10
g i ]
= 1OO§ E

107

10° 100 10°  10° 107
N (number of elements)

F1G. 5.4. Timing results versus mesh size for the full bubble and bubble-eliminated systems for
the three-dimensional footing problem, where N is the total number of elements. The performance
comparison between the inexact block diagonal, block upper triangular, and block lower triangular
preconditioners is shown.

TABLE 5.9
Full bubble system. Iteration counts for the block preconditioners on the three-dimensional
footing problem with a varying jump in the physical parameter K.

v =0.2 and k(z) = 10710 for 2 < 0.5
k(z) forx >0.5 | 1070 108 1076 10=* 1072 1
Bo 35 42 84 98 80 80
Br 24 27 46 56 51 51
By 14 20 38 44 39 39
Bo 42 44 84 98 80 80
BL 25 28 46 56 52 51
By 24 22 39 45 4 44
TABLE 5.10

Bubble-eliminated system.  Iteration counts for the block preconditioners on the three-
dimensional footing problem with a varying jump in the physical parameter K.

v =0.2 and k(z) = 10710 for 2 < 0.5
k(z) for > 0.5 | 1071 10=8 1076 107* 1072 1

BE 61 62 115 147 131 132
BE 35 39 74 84 77 78
BE 18 27 54 61 56 57
Bp” 61 62 115 147 131 133
—~FE

Br 36 39 74 84 79 79
By” 29 20 55 63 61 60

the jump gets larger and, more importantly, the iterations are bounded from above.
This is consistent with our theoretical results that there is an upper bound on the
condition number or FOVs for the preconditioned system.
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6. Conclusions. The stability and well-posedness of the discrete problem pro-
vide a foundation for designing robust preconditioners. Thus, we are able to develop
block preconditioners which yield uniform convergence rates for GMRES. These pre-
conditioners are robust with respect to both the physical and the discretization param-
eters, making it attractive for problems in poromechanics, such as Biot’s consolidation
model considered here. Moreover, the bubble-eliminated system has the same number
of degrees of freedom as a P1-RT0-P0 discretized system, yet it is well-posed indepen-
dent of the physical and discretization parameters, and it attains performance similar
to the full bubble enriched P1-RT0-P0O system. Due to the lower number of degrees
of freedom, though, the solution time is faster than the fully stabilized system.

Future work involves developing monolithic multigrid methods for the stabilized
discretization of the three-field Biot model presented in [47]. The block precondition-
ers presented here can then be used as a relaxation step in the monolithic multigrid
method, and the overall performance will be compared against this work as stand-
alone preconditioners. Additionally, other test problems including systems with frac-
tures or other nonlinear behavior will be considered.

Appendix A. Proof of Theorem 3.1. The following lemmas are useful for
the following proofs.

LEMMA A.1. Given the system defined in (2.5),

1
1Bl < Ellvla.

where (—divwv,q) = B, with ¢ € Qp, and v € V.

Proof. By direct computation,
a(v,v) > || divw|?* > (?||Pg, divol?,

where Pg, is the L2-projection from @Q onto Q. As an abuse of notation, we use v
for the corresponding vector representation and write the above inequality in matrix
form, concluding that

1
B[ < EllvHAu~ d

COROLLARY A.2. Considering only the bubble component for Lemma A.1, we
have

1 1
B[ -1 < z||$b||Abb < EHwbHDbb-
Proof. The first inequality follows the same arguments as the proof of Lemma

A.1, and the second inequality comes from the spectral equivalence of Ay, and Dy,
ie., (3.4). ad

With the above result, we now show the well-posedness of the system given by
Theorem 3.1, restated here.

THEOREM A.3. If (Vi,, W}, Qp) is Stokes—Biot stable, then

AP, X
(A1) sup sup AT
02z,eX), 0£yneXy || ZnllDllYnllD
D
(A.2) inf (AZ@n,yn) - -

sup @ ————
0#Yn€Xn 04z, eX, ||ZhllDllYynllD
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where
Al Ay 0 0
P=149 o (O‘i + i) M 0 ’
¢? M p
0 0 0 ™My + 72cp A

and A = B,T,Mp’le.

Proof. From (4 22), for a given p € @y, there exists z € V},, such that
(p, Buz) > 'YB Hp|| and Hz||A3 = [|plln,. Let v =u— 01z, r = w, and
qg=—p— 927 div w; then7 by the Cauchy—Shwarz and Young’s inequalities,

(AP (u,w,p"), (v, 7,0)") = llulfip — 01(AJu, 2) + O10(p, Buz) + 7l|wll3,,
1 1 _
+ MHpH?Wp + HQTM(]L Byw) + 0207 (Byu, M, ! Bpw)

2 2
+ Oo1 Hwa”M;l

>l — Sl — D2y +0,222 2 o,
il + il - P2 1&2 ||p|\M
BBy, )~ Zo?| Byl
- %T%\wau . 1+9272||wa\\
Combining terms and applying Lemma A.1,
D T T 1 0y 0? 2
(A2 w0, 0ra)) = (5 = 255 ) Il + rlwlis, + 301 Bl

avB 0 3292 1 9
(022 = Y i, + (1- 157 ) 27lol,

1
Choosing 6, = 27}( and 0, = 1 (‘2‘—; + ﬁ) ,

1 1

A w0, ) = (5 - ) Tl + 7ol

-1
1 4 1 9 3a27]23 9
+ 67— <CQ + ) Hwa”M,;l + (8772C2 ||p||Mp

3 2
+ (1 - 4> MHP”MP
(

> 7| (u, w,p) |5,

- . 32
where ¥ :mln{%,S'YTE . |

Appendix B. Proof of Theorem 3.2. To start, we use a result from [§],
which is restated here for convenience.
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PROPOSITION B.1 (Proposition 3.4.5 in [8]). Let B be an m x n matriz, Sx
be an n x n SPD matriz, and Sy be an m x m SPD matriz. Define the norms
llz|% = (Sxx)T(Sxx) and ||y||3 = (Syy)T (Syy), for x € R", y € R™, and let 3
be defined as

B
inf  sup _(Br.y) =: f,
veH™ gexr |zl x(lylly
where K := ker B and H = ker BT. Then, 8 coincides with the smallest positive
singular value of the matrixz Sy BSx .

With the above result, we now show the well-posedness of the bubble-eliminated
system given by Theorem 3.2, restated here.

THEOREM B.2. If the full system (2.5) is well-posed, satisfying (3.2) and (3.3)
with respect to the norm (3.1), then the bubble-eliminated system, (2.7), satisfies the
following inequalities for ¥ = (u;,pp,wy)T € XF and y¥ = (v, qn,mn)" € XF:

E.E ,E
(B.1) inf sup M > ~*
0rareXF ozgtixs [@F oz [P s
and
E.E . E
0£xFcX P 0£yPeX P 2] pelly®|pe
where
Ay — AL Dy Ay 0 0
DF = 0 o?ByDy' Bl + ;' M, 0 ,
0 0 My + T2¢pAw
with
(B.3) l@” s = (DFa”, 2F).

Thus, (2.7) is well-posed with respect to the weighted norm (3.9).

Proof. The matrix AP given in (2.6) affords the following decomposition:

(B.4) AP = LSLT,
with
I 000 I 00 0
-1 —Ag;D;bll I 00 Fo1_ —A@D,;,}1 I 00
aByDy' 0 I 0 |° —aByDyt 0 1 0 |’
0 001 0 00 I
and
Dy 0 0

0
S Ay — ALDy Ay aBf' — a AL D' BT 0
B

0
0 —aBj+aByDy,' Ay o®ByDy)' B + LM, —7By,
0 0 TBT T My,

w
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Note that AF is a submatrix of S. Then, looking at the inf-sup condition (3.6), we
have, for & = (up, w;, pr, wp)? € Xj, and y = (v, vy, qn, n)" € X,

(APz,y)  (LSL"z,y) (S€, )

lzlollylo — lzlollyle — €lz-1pz-rlnll-1pr-r

where £ = ET:B, ¢ = LTy. We will proceed by showing that L='DL~7 and L-'DL-T
are spectrally equivalent to the following block diagonal matrix:

Dyp 0 0 0
Ao O Au- AL Dy Ay 0 0
0 0 o?ByDy,' Bl + ¢ ' M, 0

0 0 0 TMy + T2CpAw

Note that DF, corresponding to the weighted norm on the bubble-eliminated system
(3.9), is a submatrix of D.

By direct computation, the Cauchy—Schwarz inequality, Young’s inequality, and
use of Corollary A.2, we have, for = (uy, u;, pr,wn)? € Xy,

(Lil’DLivaw) = (ﬁ.’l},$) + a(Bbubap) + Q(ng, ub)
> (Da, @) — o Byus |y [plla1, — @l y,

- 1 3a? 1 3a?
> (D) - g wilb,, — Gz ol = 5ol — 19, e

p”BbDb_bleT

4
2

1 9 ol 9 o 1 3a? 9
= gHubHDbb +a ZHp”BbD;BbT + & + M) ae Pl
el + w2, 420, a0

where AL = A; — AaD&)lAbl. Thus, we get that

(B.5) (L'DL Tz, x) > ~(Dx,x).

N

Similarly,
(L'DL T, x) = (ﬁm, x) + a(Byup, p) + cv(Bpr, Uuyp)
< (Dz,2) + a|| Byws| 1 1Pl ag, + allusl|y, 0] 5, 21 pr
~ 1 2 CK2 2 1 2 a2 2
< (Dz,z) + g, + 2—CzllpHMp + 5 lwlln,, + i, pt pr
1 a? 1 a?
_ 2 2 2 2
= 2l + 20+ DI, nag + (55 + 57) + 3 ) 101
Hllwle + w7, 120, A
yielding
(B.6) (L'DL Tz, x) < 2(Dx,x).

With (B.5) and (B.6) we have that L™'DL™~T is spectrally equivalent to D. For the
L= 'DL~T operator, by direct computation and the Cauchy-Schwarz inequality, we
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have
(L7'DL "z, @) = (Dx, ) — a(Byus, p) — (B p,up)
> (Da, ) — o Byws| 1 1Pl s, — allup|[ oy, 1Pl 5, -1 57>

and the rest of the proof for the lower bound follows exactly as it does in the L='DL~T
case. Similarly for the upper bound, we have

(‘i_lp‘i_Tw7w) = (@m,w) - a(Bbubyp) - a(ngv ub)
< (D, ) + al| Byus| -1 Ipllar, + allusllpy, 12l 5, 1 s
and the rest of the proof for the upper bound follows from the L='DL~T case. Thus,

L='DL~T and L='DL~T are spectrally equivalent to the block diagonal matrix D.
We then write, for all x,y,

(APx,y) (S, ) _ 16(S¢, )

lzlollyllo — [€lz-rpr-rlele-1or-r = I€lslels

Since the maps LT : @ — & and LT : y — ¢ are one-to-one,

(S€, ) .

inf sup T >,
0£€€Xn 020 x, I€llsllels

where v* = %.
Evoking Proposition B.1 (Proposition 3.4.5 in [8]), we know that the smallest
singular value of D~1/28D~1/2 is bounded from below by a fixed positive constant.

The matrix
p-1/25p-1/2 — ( Dy 1/2 DbbD_l/2 0
0 (DE)~1/2 AE(DE)~1/2

is a block diagonal matrix with (D¥)~1/2 AF(DF)~1/2 as a submatrix on the diagonal.
Then the smallest singular value of (DF)~1/2 AE(DF)~1/2 ig bounded from below by
a fixed positive constant. Therefore, we arrive at (3.7) for % = (u;, p, w,)T € XF
and y¥ = (v, qn, )7 € XE:

E_E , E
inf sup M > "
0£xEEX Y 0tyEe X F 2"l pely” [ pe

The upper bound follows from the following set of inequalities:

(APz,y)

sup Sup T

02z X, 04yex, |1Zlplylp
(S€, )

> sup sup
oz¢ex, oxpex, A€l plelln

(5 ) ][]
[wOE] 5 [yOE] 5

(AP y")
= sup sup 1 z? 5 ,
0£zPe X[ 0£yPeX ] |z pelly®|pe

> sup sup

o£zFeX P o£yFeXp 4
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which results in (3.8). |

(17]

18]
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20]
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